Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya

Type: Article

Publication Date: 2017-05-25

Citations: 32

DOI: https://doi.org/10.1038/s41598-017-02560-z

Abstract

Abstract Malaria surveillance data provide opportunity to develop forecasting models. Seasonal variability in environmental factors correlate with malaria transmission, thus the identification of transmission patterns is useful in developing prediction models. However, with changing seasonal transmission patterns, either due to interventions or shifting weather seasons, traditional modelling approaches may not yield adequate predictive skill. Two statistical models,a general additive model (GAM) and GAMBOOST model with boosted regression were contrasted by assessing their predictive accuracy in forecasting malaria admissions at lead times of one to three months. Monthly admission data for children under five years with confirmed malaria at the Siaya district hospital in Western Kenya for the period 2003 to 2013 were used together with satellite derived data on rainfall, average temperature and evapotranspiration(ET). There was a total of 8,476 confirmed malaria admissions. The peak of malaria season changed and malaria admissions reduced overtime. The GAMBOOST model at 1-month lead time had the highest predictive skill during both the training and test periods and thus can be utilized in a malaria early warning system.

Locations

  • Scientific Reports - View - PDF
  • PubMed Central - View
  • DiVA at Umeå University (Umeå University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • PubMed - View

Similar Works

Action Title Year Authors
+ PDF Chat Author Correction: Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya 2018 Maquins Odhiambo Sewe
Yesim Tozan
Clas Ahlm
Joacim Rocklöv
+ PDF Chat Evaluation of environmentally driven models for early warning of malaria: an exploratory study 2017 Christopher L. Merkord
Justin K. Davis
Michael C. Wimberly
+ PDF Chat A Weather-Based Prediction Model of Malaria Prevalence in Amenfi West District, Ghana 2017 Esther Love Darkoh
John Aseidu Larbi
Eric Adjei Lawer
+ PDF Chat Forecasting malaria in a highly endemic country using environmental and clinical predictors 2015 Kate Zinszer
Ruth Kigozi
Katia Charland
Grant Dorsey
Timothy F. Brewer
John S. Brownstein
Moses R. Kamya
David L. Buckeridge
+ PDF Chat A Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model to predict monthly malaria cases in KwaZulu-Natal, South Africa 2018 Osadolor Ebhuoma
Michael Gebreslasie
Lethumusa Magubane
+ GEOSTATISTICAL EVALUATION OF THE IMPACT OF TEMPERATURE AND RAINFALL ON MALARIA INCIDENCE IN THE SOUTH-WEST OF NIGERIA FROM 2000-2020 2024 Olayinka Otusanya
Alabi Soneye
Mayowa Fasona
A.O. Ayeni
Akinlabi Akintuyi
A.O. Daramola
+ PDF Chat Statistical Modeling of Malaria Incidences in Apac District, Uganda 2017 Ayo Eunice
Anthony Wanjoya
Livingstone S. Luboobi
+ PDF Chat Bayesian Geostatistical Modeling to Assess Malaria Seasonality and Monthly Incidence Risk in Eswatini 2022 Sabelo Nick Dlamini
Ibrahima Socé Fall
Sizwe D. Mabaso
+ PDF Chat Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda 2016 Felipe J. Colón‐González
Adrian M. Tompkins
Riccardo Biondi
Jean Pierre Bizimana
Didacus B. Namanya
+ Malaria Projections: Simulating between Simple Forecast Models And Multi-Model Ensemble 2024 Bosson-Amedenu Senyefia
Theodore Oduro-Okyireh
Abdulzeid Anafo
Alice Constance Mensah
+ PDF Chat The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example 2022 Camille Morlighem
Celia Chaiban
Stefanos Georganos
Oscar Brousse
Jonas Van de Walle
Nicole Van Lipzig
Éléonore Wolff
Sébastien Dujardin
Catherine Linard
+ PDF Chat Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia 2010 Eskindir Loha
Bernt Lindtjørn
+ Analysis of geographical and temporal patterns of malaria transmission in Limpopo Province, South Africa using Bayesian geo-statistical modelling. 2013 Aphelele Ronnie. Mgabisa
+ Spatio-temporal modelling of malaria incidence for evaluation of public health policy interventions in Ghana, West Africa 2011 Simon Kojo Appiah
Ute Mueller
+ PDF Chat Geographically weighted regression modelling of the spatial association between malaria cases and environmental factors in Cameroon 2019 Marlvin Anemey Tewara
Yunxia Liu
Prisca Ngetemalah Mbah-Fongkimeh
Zheng Zhaolei
Helen Binang
Xinhui Liu
Miao Zhou
Xiaojuan Liu
Fuzhong Xue
+ PDF Chat Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis 2017 Abiodun M. Adeola
Joel Botai
Hannes Rautenbach
Omolola M. Adisa
Katlego P. Ncongwane
Christina M. Botai
Temitope Christina Adebayo-Ojo
+ PDF Chat Identifying childhood malaria hotspots and risk factors in a Nigerian city using geostatistical modelling approach 2024 Taye Bayode
Alexander Siegmund
+ PDF Chat Statistical Modelling of the Effects of Weather Factors on Malaria Occurrence in Abuja, Nigeria 2020 Oguntade Emmanuel Segun
Shamarina Shohaimi
Meenakshii Nallapan
Alaba Ajibola Lamidi-Sarumoh
Nader Salari
+ PDF Chat Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana 2019 Robert Yankson
Evelyn Arthur Anto
Michael G. Chipeta
+ PDF Chat Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study 2014 D. R. Nygren
Cristina Stoyanov
Clemens Lewold
Fredrik Månsson
John M. Miller
Aniset Kamanga
Clive Shiff

Works That Cite This (10)

Action Title Year Authors
+ PDF Chat Combining weather patterns and cycles of population susceptibility to forecast dengue fever epidemic years in Brazil: a dynamic, ensemble learning approach 2019 Sarah F. McGough
César Leonardo Clemente
J. Nathan Kutz
Mauricio Santillana
+ PDF Chat A dynamic, ensemble learning approach to forecast dengue fever epidemic years in Brazil using weather and population susceptibility cycles 2021 Sarah F. McGough
Leonardo Clemente
J. Nathan Kutz
Mauricio Santillana
+ PDF Chat Spatio-temporal modelling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique 2018 Kathryn Colborn
Emanuele Giorgi
Andrew J. Monaghan
Eduardo Samo Gudo
Baltazar Candrinho
Tatiana Marrufo
James Colborn
+ PDF Chat Infectious Disease Forecasting for Public Health 2020 Stephen A. Lauer
Alexandria Brown
Nicholas G Reich
+ PDF Chat Exploring malaria prediction models in Togo: a time series forecasting by health district and target group 2024 Anne Thomas
Tchaa Abalo Bakaï
Tinah Atcha-Oubou
Tchassama Tchadjobo
Muriel Rabilloud
Nicolas Voirin
+ PDF Chat Addressing challenges in routine health data reporting in Burkina Faso through Bayesian spatiotemporal prediction of weekly clinical malaria incidence 2020 Toussaint Rouamba
Sékou Samadoulougou
Fati Kirakoya‐Samadoulougou
+ PDF Chat Spatio-temporal analysis of association between incidence of malaria and environmental predictors of malaria transmission in Nigeria 2019 Oluyemi Adewole Okunlola
Oyetunde T. Oyeyemi
+ PDF Chat Mapping Malaria by Sharing Spatial Information Between Incidence and Prevalence Data Sets 2021 Tim Lucas
A. Nandi
Elisabeth G. Chestnutt
Katherine A. Twohig
Suzanne Keddie
Emma L. Collins
Rosalind E. Howes
Huong Lan Thi Nguyen
Susan F. Rumisha
André Python
+ PDF Chat Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review 2019 Elisavet Parselia
Charalampos Kontoes
Alexia Tsouni
Christos Hadjichristodoulou
Ioannis Kioutsioukis
Gkikas Magiorkinis
Nikolaos I. Stilianakis
+ PDF Chat Mapping malaria by sharing spatial information between incidence and prevalence datasets 2020 Tim Lucas
A. Nandi
Elisabeth G. Chestnutt
Katherine A. Twohig
Suzanne Keddie
Emma L. Collins
Rosalind E. Howes
Huong Lan Thi Nguyen
Susan F. Rumisha
André Python

Works Cited by This (8)

Action Title Year Authors
+ PDF Chat Forecasting malaria in a highly endemic country using environmental and clinical predictors 2015 Kate Zinszer
Ruth Kigozi
Katia Charland
Grant Dorsey
Timothy F. Brewer
John S. Brownstein
Moses R. Kamya
David L. Buckeridge
+ Generalized Additive Models: An Introduction with R, Second Edition 2017 Simon N. Wood
+ A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission 2013 Sudheer Ch
Sahar Sohani
Deepak Kumar
Anushree Malik
B. R. Chahar
Arvind K. Nema
B.K. Panigrahi
Ramesh C. Dhiman
+ PDF Chat Bayesian variable selection in modelling geographical heterogeneity in malaria transmission from sparse data: an application to Nouna Health and Demographic Surveillance System (HDSS) data, Burkina Faso 2015 Eric Diboulo
Ali Sié
Diallo A Diadier
Dimitrios A Karagiannis Voules
Yazoumé Yé
Penelope Vounatsou
+ PDF Chat The development of an early warning system for climate‐sensitive disease risk with a focus on dengue epidemics in Southeast Brazil 2012 Rachel Lowe
Trevor Bailey
David B. Stephenson
Tim E. Jupp
Richard Graham
Christovam Barcellos
Marília Sá Carvalho
+ A Survey of Forecast Error Measures 2013 Maxim Shcherbakov
Adriaan Brebels
Anton Tyukov
Timur Janovsky
Valeriy Anatol
+ PDF Chat Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda 2016 Felipe J. Colón‐González
Adrian M. Tompkins
Riccardo Biondi
Jean Pierre Bizimana
Didacus B. Namanya
+ PDF Chat <b>gamboostLSS</b>: An <i>R</i> Package for Model Building and Variable Selection in the GAMLSS Framework 2016 Benjamin Hofner
Andreas Mayr
Matthias Schmid