Boltzmann–Gibbs states in topological quantum walks and associated many-body systems: fidelity and Uhlmann parallel transport analysis of phase transitions

Type: Article

Publication Date: 2017-07-25

Citations: 11

DOI: https://doi.org/10.1088/1751-8121/aa820e

Abstract

We perform the fidelity analysis for Boltzmann-Gibbs-like states in order to investigate whether the topological order of 1D fermionic systems at zero temperature is maintained at finite temperatures. We use quantum walk protocols that are known to simulate topological phases and the respective quantum phase transitions for chiral symmetric Hamiltonians. Using the standard approaches of the fidelity analysis and the study of edge states, we conclude that no thermal-like phase transitions occur as temperature increases, i.e., the topological behaviour is washed out gradually. We also show that the behaviour of the Uhlmann geometric factor associated to the considered fidelity exhibits the same behaviour as the latter, thus confirming the results obtained using the previously established approaches.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Physics A Mathematical and Theoretical - View

Similar Works

Action Title Year Authors
+ Boltzmann-Gibbs states in topological quantum walks: Fidelity analysis of Phase Transitions 2016 Bruno Mera
Chrysoula Vlachou
Nikola Paunković
V. R. Vieira
+ PDF Chat Fidelity and Uhlmann connection analysis of topological phase transitions in two dimensions 2018 Syed Tahir Amin
Bruno Mera
Chrysoula Vlachou
Nikola Paunković
V. R. Vieira
+ PDF Chat Quantum fidelity for one-dimensional Dirac fermions and two-dimensional Kitaev model in the thermodynamic limit 2012 Victor Mukherjee
Amit Dutta
Diptiman Sen
+ PDF Chat THE CHARACTERIZATION OF TOPOLOGICAL PROPERTIES IN QUANTUM MONTE CARLO SIMULATIONS OF THE KANE–MELE–HUBBARD MODEL 2013 Zi Yang Meng
Hsiang-Hsuan Hung
Thomas C. Lang
+ PDF Chat Toward simulation of topological phenomena with one-, two-, and three-dimensional quantum walks 2021 S. Panahiyan
S. Fritzsche
+ PDF Chat Fidelity Susceptibility Made Simple: A Unified Quantum Monte Carlo Approach 2015 Lei Wang
Ye-Hua Liu
Jakub Imriška
Ping Nang
Matthias Troyer
+ PDF Chat Topological chiral currents in the Gross-Neveu model extention 2021 Emanuele Tirrito
Maciej Lewenstein
Alfredo Bermúdez
+ Local convertibility and edge states in quantum many body systems 2013 Fabio Franchini
Jian Cui
Luigi Amico
Heng Fan
Mile Gu
V. E. Korepin
L. C. Kwek
Vlatko Vedral
+ PDF Chat Dynamical phase transitions at finite temperature from fidelity and interferometric Loschmidt echo induced metrics 2018 Bruno Mera
Chrysoula Vlachou
Nikola Paunković
V. R. Vieira
Oscar Viyuela
+ PDF Chat Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry 2024 Yue Zhang
Shuai Li
Yingchao Xu
Rui Tian
Miao Zhang
Hong-Rong Li
Hong Gao
M. Suhail Zubairy
Fuli Li
Bo Liu
+ PDF Chat Topological chiral currents in the Gross-Neveu model extension 2022 Emanuele Tirrito
Maciej Lewenstein
A. Bermúdez
+ PDF Chat Entanglement engineering and topological protection by discrete-time quantum walks 2013 Simon Moulieras
Maciej Lewenstein
Graciana Puentes
+ PDF Chat Non-Markovianity and bound states in quantum walks with a phase impurity 2019 Burçin Danacı
Göktuğ Karpat
İ. Yalçınkaya
A. L. Subaşı
+ PDF Chat FIDELITY APPROACH TO QUANTUM PHASE TRANSITIONS 2010 Shi-Jian Gu
+ PDF Chat Witnessing environment induced topological phase transitions via quantum Monte Carlo and cluster perturbation theory studies 2024 Fabrizio Pavan
A. de Candia
G. Di Bello
V. Cataudella
Naoto Nagaosa
C. A. Perroni
G. De Filippis
+ Real-space effects of a quench in the Su-Schrieffer-Heeger model and elusive dynamical appearance of the topological edge states 2021 Lorenzo Rossi
Fausto Rossi
Fabrizio Dolcini
+ PDF Chat Phase transitions in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math>and U(1) clock models 2019 Gaoyong Sun
T. Vekua
Emilio Cobanera
Gerardo Ortíz
+ Simulation of anyonic statistics and its topological path independence using a 7-qubit quantum simulator 2016 Annie Jihyun Park
Emma McKay
Dawei Lu
Raymond Laflamme
+ PDF Chat Detecting quasi-degenerate ground states in 1D topological models via VQE 2024 Carola Ciaramelletti
Martin Beseda
Mirko Consiglio
Luca Lepori
Tony J. G. Apollaro
Simone Paganelli
+ Real-space effects of a quench in the Su–Schrieffer–Heeger model and elusive dynamical appearance of the topological edge states 2021 Lorenzo Rossi
Fausto Rossi
Fabrizio Dolcini

Works Cited by This (39)

Action Title Year Authors
+ PDF Chat Observation of topologically protected bound states in photonic quantum walks 2012 Takuya Kitagawa
Matthew A. Broome
Alessandro Fedrizzi
Mark S. Rudner
Erez Berg
Ivan Kassal
Alán Aspuru‐Guzik
Eugene Demler
A. G. White
+ PDF Chat Density-matrix Chern insulators: Finite-temperature generalization of topological insulators 2013 Ángel Rivas
Oscar Viyuela
M. A. Martín-Delgado
+ PDF Chat Relaxation in a Completely Integrable Many-Body Quantum System: An<i>Ab Initio</i>Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons 2007 Marcos Rigol
Vanja Dunjko
Vladimir Yurovsky
Maxim Olshanii
+ PDF Chat Ground state overlap and quantum phase transitions 2006 Paolo Zanardi
Nikola Paunković
+ Singularities in ground state fidelity and quantum phase transitions for the Kitaev model 2008 Jian-Hui Zhao
Huan-Qiang Zhou
+ Macroscopic distinguishability between quantum states defining different phases of matter: Fidelity and the Uhlmann geometric phase 2008 Nikola Paunković
V. R. Vieira
+ PDF Chat Topological characterization of periodically driven quantum systems 2010 Takuya Kitagawa
Erez Berg
Mark S. Rudner
Eugene Demler
+ PDF Chat Classification of topological insulators and superconductors in three spatial dimensions 2008 Andreas P. Schnyder
Shinsei Ryu
Akira Furusaki
Andreas W. W. Ludwig
+ PDF Chat Fidelity analysis of topological quantum phase transitions 2008 Damian F. Abasto
Alioscia Hamma
Paolo Zanardi
+ PDF Chat Two-Dimensional Density-Matrix Topological Fermionic Phases: Topological Uhlmann Numbers 2014 Oscar Viyuela
Ángel Rivas
M. A. Martín-Delgado