Understanding Black-box Predictions via Influence Functions

Type: Preprint

Publication Date: 2017-01-01

Citations: 1137

DOI: https://doi.org/10.48550/arxiv.1703.04730

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Understanding Black-box Predictions via Influence Functions 2017 Pang Wei Koh
Percy Liang
+ Deeper Understanding of Black-box Predictions via Generalized Influence Functions 2023 Hyeonsu Lyu
Jonggyu Jang
Se-Hyun Ryu
Hyun Jong Yang
+ How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection 2022 Mantas Mazeika
Bo Li
David Forsyth
+ Trust but Verify: Assigning Prediction Credibility by Counterfactual Constrained Learning 2020 Luiz F. O. Chamon
Santiago Paternain
Alejandro Ribeiro
+ Trust but Verify: Assigning Prediction Credibility by Counterfactual Constrained Learning. 2020 Luiz F. O. Chamon
Santiago Paternain
Alejandro Ribeiro
+ Theoretical and Practical Perspectives on what Influence Functions Do 2023 Andrea Schioppa
Katja Filippova
Ivan Titov
Polina Zablotskaia
+ PDF Chat The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes 2024 Myeongseob Ko
Feiyang Kang
Weiyan Shi
Ming Jin
Yu Zhou
Ruoxi Jia
+ Training Data Influence Analysis and Estimation: A Survey 2022 Zayd Hammoudeh
Daniel Lowd
+ FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging 2020 Han Guo
Nazneen Fatema Rajani
Peter Hase
Mohit Bansal
Caiming Xiong
+ Estimating Training Data Influence by Tracing Gradient Descent 2020 Garima Pruthi
Frederick Liu
Mukund Sundararajan
Satyen Kale
+ Estimating Training Data Influence by Tracking Gradient Descent 2020 Garima Pruthi
Frederick Liu
Mukund Sundararajan
Satyen Kale
+ Influence Functions in Deep Learning Are Fragile 2020 Samyadeep Basu
Phil Pope
Soheil Feizi
+ Influence Functions in Deep Learning Are Fragile 2020 Samyadeep Basu
Philip Pope
Soheil Feizi
+ PDF Chat FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging 2021 Han Guo
Nazneen Fatema Rajani
Peter Hase
Mohit Bansal
Caiming Xiong
+ Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey with Causality Perspectives 2023 Haoyang Liu
Maheep Chaudhary
Haohan Wang
+ Revisiting the Fragility of Influence Functions 2023 Jacob R. Epifano
Ravi P. Ramachandran
Aaron J. Masino
Ghulam Rasool
+ Theoretical Foundations of Adversarially Robust Learning 2023 Omar Montasser
+ Trustworthy Machine Learning 2023 BĂĄlint MucsĂĄnyi
Michael Kirchhof
Elisa Nguyen
Alexander Rubinstein
Seung‐June Oh
+ Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples 2021 Maura Pintor
Luca Demetrio
Angelo Sotgiu
Ambra Demontis
Nicholas Carlini
Battista Biggio
Fabio Roli
+ PDF Chat BadGD: A unified data-centric framework to identify gradient descent vulnerabilities 2024 Chi‐Hua Wang
Guang Cheng

Works That Cite This (731)

Action Title Year Authors
+ Explaining Latent Representations with a Corpus of Examples 2021 Jonathan Crabbé
Zhaozhi Qian
Fergus Imrie
Mihaela van der Schaar
+ Overcoming Catastrophic Forgetting in Graph Neural Networks with Experience Replay 2021 Fan Zhou
Chengtai Cao
+ PDF Chat Towards Adversarial Malware Detection 2019 Davide Maiorca
Battista Biggio
Giorgio Giacinto
+ PDF Chat The Threat of Offensive AI to Organizations 2022 Yisroel Mirsky
Ambra Demontis
Jaidip Kotak
Ram Shankar
Gelei Deng
Yang Liu
Xiangyu Zhang
Maura Pintor
Wenke Lee
Yuval Elovici
+ PDF Chat Towards a mathematical framework to inform neural network modelling via polynomial regression 2021 Pablo Morala
Jenny Cifuentes
Rosa E. Lillo
Iñaki Ucar
+ Fairness Under Feature Exemptions: Counterfactual and Observational Measures 2021 Sanghamitra Dutta
Praveen Venkatesh
Piotr Mardziel
Anupam Datta
Pulkit Grover
+ Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation 2020 Raha Moraffah
Mansooreh Karami
Ruocheng Guo
Adrienne Raglin
Huan Liu
+ Evaluating the Correctness of Explainable AI Algorithms for Classification 2021 Orcun Yalcin
Xiuyi Fan
Siyuan Liu
+ PDF Chat An explainable deep vision system for animal classification and detection in trail-camera images with automatic post-deployment retraining 2021 Golnaz Moallem
Don Pathirage
Joel Reznick
James F. Gallagher
Hamed Sari‐Sarraf
+ Efficient Data-Dependent Learnability. 2020 Yaniv Fogel
Tal Shapira
Meir Feder