Algorithms for translational tiling

Type: Article

Publication Date: 2009-06-20

Citations: 17

DOI: https://doi.org/10.1080/17459730903040899

Abstract

Abstract In this paper, we study algorithms for tiling problems. We show that the conditions (T1) and (T2) of Coven and Meyerowitz [E. Coven and A. Meyerowitz, Tiling the integers with translates of one finite set, J. Algebra 212(1) (1999), pp. 161–174], conjectured to be necessary and sufficient for a finite set A to tile the integers, can be checked in time polynomial in diam (A). We also give heuristic algorithms to find all non-periodic tilings of a cyclic group ℤ N . In particular, we carry out a full classification of all non-periodic tilings of ℤ144. Keywords: translational tilesalgorithms 2000 Mathematics Subject Classifications : 05B4543A2568W3068T20 Acknowledgements M.N. Kolountzakis was supported by research grant No. 2569 from the University of Crete. M. Matolcsi was supported by ERC-AdG 228005, and Hungarian National Foundation for Scientific Research (OTKA), Grant Nos PF-64061, T-049301.

Locations

  • Journal of Mathematics and Music - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Algorithms for translational tiling 2008 Mihail N. Kolountzakis
Máté Matolcsi
+ Splitting for integer tilings and the Coven-Meyerowitz tiling conditions 2022 Izabella Łaba
Itay Londner
+ The Coven-Meyerowitz tiling conditions for 3 odd prime factors 2021 Izabella Łaba
Itay Londner
+ PDF Chat Splitting for integer tilings 2024 Izabella Łaba
Itay Londner
+ PDF Chat The Coven–Meyerowitz tiling conditions for 3 odd prime factors 2022 Izabella Łaba
Itay Londner
+ A note on reduction of tiling problems 2025 Tom Meyerovitch
Shrey Sanadhya
Yaar Solomon
+ Maximally Even Tilings: Theory and Algorithms 2019 Jeremiah D Kastine
+ A note on reduction of tiling problems 2022 Tom Meyerovitch
Shrey Sanadhya
Yaar Solomon
+ Periodicity and decidability of tilings of ℤ2 2020 Siddhartha Bhattacharya
+ A Note on Tatami Tilings (Mathematical Foundation of Algorithms and Computer Science) 2010 Artiom Alhazov
Kenichi Morita
Chuzo Iwamoto
+ PDF Chat Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile 2023 Rachel Greenfeld
Terence Tao
+ A Brief Introduction to Tilings 1989 Marjorie Senechal
+ The structure of translational tilings in $\mathbb{Z}^d$ 2020 Rachel Greenfeld
Terence Tao
+ PDF Chat On the minimal period of integer tilings 2024 Izabella Łaba
Dmitrii Zakharov
+ Aperiodic Tilings on the Computer 2002 Uwe Grimm
Michael Schreiber
+ Tilings by translation 2010 Mihail N. Kolountzakis
Máté Matolcsi
+ Tilings by translation 2010 Mihail N. Kolountzakis
Máté Matolcsi
+ PDF Chat Functional tilings and the Coven-Meyerowitz tiling conditions 2024 Gergely Kiss
Itay Londner
Máté Matolcsi
Gábor Somlai
+ Undecidability of translational monotilings 2023 Rachel Greenfeld
Terence Tao
+ Tilings of rectangles with T-tetrominoes 2004 Michael Korn
Igor Pak