Diffeomorphisms of manifolds with finite fundamental group

Type: Article

Publication Date: 1994-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0273-0979-1994-00496-3

Abstract

We show that the group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D left-parenthesis upper M right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {D}(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of pseudoisotopy classes of diffeomorphisms of a manifold of dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="greater-than-or-equal-to 5"> <mml:semantics> <mml:mrow> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\geq 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of finite fundamental group is commensurable to an arithmetic group. As a result <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi 0 left-parenthesis upper D i f f upper M right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>D</mml:mi> <mml:mi>i</mml:mi> <mml:mi>f</mml:mi> <mml:mi>f</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mi>M</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\pi _0}(Diff\,M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a group of finite type.

Locations

  • arXiv (Cornell University) - View - PDF
  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Unsmoothable diffeomorphisms on higher dimensional manifolds 1979 Jenny Harrison
+ A note on homotopy and pseudoisotopy of diffeomorphisms of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn></mml:math>-manifolds 2024 Manuel Krannich
Alexander Kupers
+ PDF Chat Smooth type 𝐼𝐼𝐼 diffeomorphisms of manifolds 1983 Jane Hawkins
+ PDF Chat Diffeomorphisms almost regularly homotopic to the identity 1978 Robert Wells
+ PDF Chat Free 𝑆¹ actions and the group of diffeomorphisms 1974 Kai Wang
+ PDF Chat On the product of stable diffeomorphisms 1983 Atsuro Sannami
+ Minimal 𝐶¹-diffeomorphisms of the circle which admit measurable fundamental domains 2013 Hiroki Kodama
Shigenori Matsumoto
+ Diffeomorphisms with global dominated splittings cannot be minimal 2011 Pengfei Zhang
+ PDF Chat On isomorphic classical diffeomorphism groups. I 1986 Augustin Banyaga
+ Smooth Lie group actions are parametrized diffeological subgroups 2011 Patrick Iglesias-Zemmour
Yael Karshon
+ PDF Chat Some homotopy properties of the homeomorphism groups of 𝑅^{∞} (𝑄^{∞})-manifolds 1987 Vo Thanh Liem
+ PDF Chat A note on local change of diffeomorphism 1989 Mikiya Masuda
+ PDF Chat On mapping class groups of contractible open 3-manifolds 1993 Robert C. Myers
+ PDF Chat The group of 𝑃𝐿-homeomorphisms of a compact 𝑃𝐿-manifold is an 1^{𝑓}₂-manifold 1974 James Keesling
David C. Wilson
+ Examples of diffeomorphism group cocycles with no periodic approximation 2018 Sebastián Hurtado
+ Differentiable conjugacy for groups of area-preserving circle diffeomorphisms 2016 Daniel Monclair
+ PDF Chat Automorphisms of spaces with finite fundamental group 1995 Georgia Triantafillou
+ PDF Chat Equivariant, almost homeomorphic maps between 𝑆¹ and 𝑆² 1995 Teruhiko Soma
+ PDF Chat Involutions on homotopy spheres and their gluing diffeomorphisms 1976 Chao Liang
+ PDF Chat Small sets of homeomorphisms which control manifolds 1976 Norman Levitt