How many zeros of a random polynomial are real?

Type: Article

Publication Date: 1995-01-01

Citations: 391

DOI: https://doi.org/10.1090/s0273-0979-1995-00571-9

Abstract

We provide an elementary geometric derivation of the Kac integral formula for the expected number of real zeros of a random polynomial with independent standard normally distributed coefficients. We show that the expected number of real zeros is simply the length of the moment curve <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 1 comma t comma ellipsis comma t Superscript n Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mo>…<!-- … --></mml:mo> <mml:mspace width="thinmathspace" /> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(1,\,t,\,\ldots \,,t^{n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> projected onto the surface of the unit sphere, divided by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The probability density of the real zeros is proportional to how fast this curve is traced out. We then relax Kac’s assumptions by considering a variety of random sums, series, and distributions, and we also illustrate such ideas as integral geometry and the Fubini-Study metric.

Locations

  • eScholarship (California Digital Library) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ How many zeros of a random polynomial are real? 1995 Alan Edelman
Eric Kostlan
+ How many zeros of a random polynomial are real 1995 Alan Edelman
Eric Kostlan
+ Random polynomials having few or no real zeros 2002 Amir Dembo
Bjorn Poonen
Qi-Man Shao
Ofer Zeitouni
+ PDF Chat The complex zeros of random polynomials 1995 L. A. Shepp
Robert J. Vanderbei
+ PDF Chat An asymptotic expansion for the expected number of real zeros of a random polynomial 1988 J. Ernest Wilkins
+ Real roots near the unit circle of random polynomials 2021 Marcus Michelen
+ PDF Chat Real zeros of a random sum of orthogonal polynomials 1971 Minaketan Das
+ PDF Chat On the number of real zeros of a random trigonometric polynomial 1978 M. Sambandham
+ How many zeros of a random sparse polynomial are real? 2019 Gorav Jindal
Anurag Pandey
Himanshu Shukla
Charilaos Zisopoulos
+ PDF Chat How many zeros of a random sparse polynomial are real? 2020 Gorav Jindal
Anurag Pandey
Himanshu Shukla
Charilaos Zisopoulos
+ How many zeros of a random sparse polynomial are real 2019 Gorav Jindal
Anurag Pandey
Himanshu Shukla
Charilaos Zisopoulos
+ Real zeros of random trigonometric polynomials with dependent coefficients 2022 Jürgen Angst
Thibault Pautrel
Guillaume Poly
+ Expected number of real zeros for random orthogonal polynomials 2015 D. S. Lubinsky
Igor E. Pritsker
Xiaoju Xie
+ An asymptotic expansion for the expected number of real zeros of real random polynomials spanned by OPUC 2018 Hanan Aljubran
Maxim L. Yattselev
+ An asymptotic expansion for the expected number of real zeros of real random polynomials spanned by OPUC 2018 Hanan Aljubran
Maxim L. Yattselev
+ An Exercise on the Average Number of Real Zeros of Random Real Polynomials 2006 Christophe Doche
Michel Mendès France
+ An asymptotic expansion for the expected number of real zeros of real random polynomials spanned by OPUC 2018 Hanan Aljubran
Maxim L. Yattselev
+ Algebraic polynomials with non-identical random coefficients 2004 K. Farahmand
Ahmad Nezakati
+ Expected number of real zeros for random Freud orthogonal polynomials 2015 Igor E. Pritsker
Xiaoju Xie
+ PDF Chat An Asymptotic Expansion for the Expected Number of Real Zeros of a Random Polynomial 1988 J. Ernest Wilkins