Sendov conjecture for high degree polynomials

Type: Article

Publication Date: 2014-01-29

Citations: 15

DOI: https://doi.org/10.1090/s0002-9939-2014-11888-0

Locations

  • Proceedings of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Maximal polynomials and the Ilieff-Sendov conjecture 1990 Michael J. Miller
+ PDF Chat On the Sendov conjecture for sixth degree polynomials 1991 Johnny E. Brown
+ Sendov conjecture for high degree polynomials 2011 Jérôme Dégot
+ Sendov conjecture for high degree polynomials 2011 Jérôme Dégot
+ Sendov's conjecture for sufficiently high degree polynomials 2020 Terence Tao
+ Sendov's Conjecture: A note on a paper of Dégot 2018 Taboka Chalebgwa
+ PDF Chat Sendov’s conjecture for sufficiently-high-degree polynomials 2022 Terence Tao
+ Sendov's Conjecture: A note on a paper of D\'{e}got 2018 Taboka Chalebgwa
+ A Proof of Sendovs conjecture for Polynomials of degree Ten 2019 Dinesh Sharma Bhattarai
+ A proof of the sendov conjecture for polynomials of degree seven 1997 Johnny E. Brown
+ On the Sendov conjecture for polynomials with real critical points 1999 Johnny E. Brown
+ Geometry of Complex Polynomials: On Sendov's Conjecture 2016 Taboka Chalebgwa
+ PDF Chat A Private Case of Sendov's Conjecture 2020 Todor Stoyanov Stoyanov
+ PDF Chat A result related to the Sendov conjecture 2023 Robert Dalmasso
+ The Sendov conjecture for polynomials with at most seven distinct zeros 1996 Julius Borcea
+ THE SENDOV CONJECTURE FOR POLYNOMIALS WITH AT MOST SEVEN DISTINCT ZEROS 1996 LULIUS BORCEA
+ Search for Ultraflat Polynomials with Plus and Minus One Coefficients 2018 Andrew Odlyzko
+ PDF Chat Polynomial forms and complex numbers 2020 Hung-Hsi Wu
+ PDF Chat A polynomial analog of the Goldbach conjecture 1963 David R. Hayes
+ Corrigendum: A reconstruction theorem for complex polynomials 2022 Luka Boc Thaler