Global-in-time Strichartz estimates for Schrödinger on scattering manifolds

Type: Article

Publication Date: 2017-11-27

Citations: 7

DOI: https://doi.org/10.1080/03605302.2017.1399907

Abstract

We study the global-in-time Strichartz estimates for the Schrödinger equation on a class of scattering manifolds X∘. Let where Δg is the Beltrami–Laplace operator on the scattering manifold and V is a real potential function on this setting. We first extend the global-in-time Strichartz estimate in Hassell–Zhang [23 Hassell, A., Zhang, J. (2016). Global-in-time Strichartz estimates on nontrapping asymptotically conic manifolds. Anal. PDE 9:151–192.[Crossref], [Web of Science ®] , [Google Scholar]] on the requirement of V(z) = O(⟨z⟩−3) to O(⟨z⟩−2) and secondly generalize the result to the scattering manifold with a mild trapped set as well as Bouclet–Mizutani[4 Bouclet, J.M., Mizutani, H. Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping, arXiv 1602.06287v1. [Google Scholar]] but with a potential. We also obtain a global-in-time local smoothing estimate on this geometry setting.

Locations

  • Communications in Partial Differential Equations - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Global-in-time Strichartz estimates for Schrodinger on scattering manifolds 2017 Junyong Zhang
Jiqiang Zheng
+ Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping 2016 Jean‐Marc Bouclet
Haruya Mizutani
+ PDF Chat Global in time Strichartz estimates for the fractional Schrödinger equations on asymptotically Euclidean manifolds 2018 Van Duong Dinh
+ Global-in-time Strichartz estimates and cubic Schrodinger equation on metric cone 2017 Junyong Zhang
Jiqiang Zheng
+ PDF Chat Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds III: Global-in-time Strichartz estimates without loss 2017 Xi Chen
+ PDF Chat Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations 2008 Jeremy L. Marzuola
Jason Metcalfe
Daniel Tataru
+ Strichartz estimates for Schrödinger equations with slowly decaying potentials 2020 Haruya Mizutani
+ Strichartz estimates for Schrödinger equations with slowly decaying potentials 2018 Haruya Mizutani
+ Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds 2013 Junyong Zhang
+ PDF Chat Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials 2019 Haruya Mizutani
+ PDF Chat Strichartz Estimates for Schrödinger Equations on Scattering Manifolds 2012 Haruya Mizutani
+ Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations 2007 Jeremy L. Marzuola
Jason Metcalfe
Daniel Tataru
+ PDF Chat Global-in-time Strichartz estimates on nontrapping, asymptotically conic manifolds 2016 Andrew Hassell
Junyong Zhang
+ Strichartz estimates on asymptotically hyperbolic manifolds 2007 Jean‐Marc Bouclet
+ PDF Chat Global endpoint Strichartz estimates for Schrödinger equations on the cylinder <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e40" altimg="si2.svg"><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">×</mml:mo><mml:mi mathvariant="double-struck">T</mml:mi></mml:mrow></mml:math> 2021 Alexander Barron
Michael Christ
Benoît Pausader
+ Strichartz estimates for Schrödinger equations with variable coefficients and potentials at most linear at spatial infinity 2011 Haruya Mizutani
+ PDF Chat On global-in-time Strichartz estimates for the semiperiodic Schrödinger equation 2021 Alex Barron
+ Strichartz Estimates for Wave and Schrödinger Equations on Hyperbolic Trapped Domains 2014 Hongtan Sun
+ Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds 2014 Junyong Zhang
+ On global Strichartz estimates for non-trapping metrics 2008 Jean‐Marc Bouclet
Nikolay Tzvetkov