The poisson problem on Lipschitz domains

Type: Dissertation

Publication Date: 2005-05-01

Citations: 12

DOI: https://doi.org/10.32469/10355/4133

Download PDF

Abstract

The aim of this work is to describe the sharp ranges of indices, for which the Poisson problem for Laplacian with Dirichlet or Neumann boundary conditions is well-posed on the scales of Besov and Triebel-Lizorkin spaces on arbitrary Lipschitz domains. The main theorems we prove extend the work of D. Jerison and C. Kenig [JFA, 95], whose methods and results are largely restricted to the case p_ 1, and answer the open problem #3.2.21 on p. 121 in C. Kenig's book in the most complete fashion. When specialized to Hardy spaces, our results provide a solution of a (strengthened form of a) conjecture made by D.-C. Chang, S.Krantz and E. Stein regarding the regularity of the Green potentials on Hardy spaces in Lipschitz domains. The corollaries of our main results include new proofs and various extensions of: Hardy space estimates for Green potentials in convex domains due to V. Adolfsson, B.Dahlberg, S. Fromm, D. Jerison, G.Verchota and T.Wolff and the Lp - Lq estimates for the gradients of Green potentials in Lipschitz domains, due to B. Dahlberg.

Locations

  • MOspace Institutional Repository (University of Missouri) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Sharp estimates for Green potentials on non-smooth domains 2004 Svitlana Mayboroda
Marius Mitrea
+ PDF Chat On the Poisson integral for Lipschitz and $C^{1}$-domains 1979 Björn Dahlbert
+ PDF Chat Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains 2002 Martin Dindoš
Marius Mitrea
+ Sobolev spaces and the Poisson problem 2014 Markus Haase
+ PDF Chat The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains 2008 Dorina Mitrea
Marius Mitrea
Sylvie Monniaux
+ PDF Chat Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces 2011 Renjin Jiang
+ PDF Chat Potential Theory on Lipschitz Domains in Riemannian Manifolds: Sobolev–Besov Space Results and the Poisson Problem 2000 Marius Mitrea
Michael Taylor
+ Boundary value problems for the Laplacian in convex and semiconvex domains 2010 Dorina Mitrea
Marius Mitrea
Lixin Yan
+ PDF Chat Lipschitz regularity for Poisson equations involving measures supported on $C^{1,\operatorname{Dini}}$ interfaces 2024 Iñigo U. Erneta
María Soria-Carro
+ Green Functions and Poisson Kernels for the Laplacian 2023 Dorina Mitrea
Irina Mitrea
Marius Mitrea
+ Boundary Layers on Sobolev–Besov Spaces and Poisson's Equation for the Laplacian in Lipschitz Domains 1998 Eugene B. Fabes
Osvaldo Méndez
Marius Mitrea
+ The Poisson equation involving surface measures 2021 Marius Müller
+ The Poisson equation involving surface measures 2021 Marius Müller
+ PDF Chat The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains 2007 Irina Mitrea
Marius Mitrea
+ Dirichlet Problems in Sobolev Spaces 2024 Kazuaki Taira
+ PDF Chat Hardy Spaces and the Dirichlet Problem on Lipschitz Domains 1987 Carlos E. Kenig
Jill Pipher
+ Well posedness for the Poisson problem on closed Lipschitz manifolds 2023 Michaël Ndjinga
Marcial Nguemfouo
+ The Poisson problem in weighted Sobolev spaces on Lipschitz domains 2006 Marius Mitrea
Michael E. Taylor
+ PDF Chat Sobolev space theory for Poisson's equation in non-smooth domains via superharmonic functions and Hardy's inequality 2024 Jinsol Seo
+ Potential Theory on Lipschitz Domains in Riemannian Manifolds: Sobolev–Besov Space Results and the Poisson Problem 2000 Marius Mitrea
Michael E. Taylor

Works Cited by This (0)

Action Title Year Authors