Hook immanantal and Hadamard inequalities for q-Laplacians of trees

Type: Article

Publication Date: 2017-02-21

Citations: 7

DOI: https://doi.org/10.1016/j.laa.2017.02.016

Locations

  • Linear Algebra and its Applications - View

Similar Works

Action Title Year Authors
+ The Third Immanant of q-Laplacian Matrices of Trees and Laplacians of Regular Graphs 2013 R.B. Bapat
Sivaramakrishnan Sivasubramanian
+ Immanantal Polynomials of Laplacian Matrix of Trees 1998 Onn Chan
Tao-Kai Lam
Kwee-Poo Yeo
+ Hook immanantal inequalities for Laplacians of trees 1997 Onn Chan
+ Hook immanantal inequalities for Laplacians of trees 1997 Onn Chan
Tao-Kai Lam
+ PDF Chat Laplacians and the Cheeger Inequality for Directed Graphs 2005 Fan Chung
+ Determinants of Laplacians; Heights and Finiteness 1990 Peter Sarnak
+ Combinatorial Laplacians and isoperimetgric inequality 1986 J. Dodziuk
+ PDF Chat Determinants of Laplacians 1987 Peter Sarnak
+ Laplacian energy of diameter 3 trees 2011 Vilmar Trevisan
João Batista Pereira de Carvalho
Renata R. Del-Vecchio
Cybele T. M. Vinagre
+ Permanental Bounds of the Laplacian Matrix of Trees with Given Domination Number 2014 Xianya Geng
Shuna Hu
Shuchao Li
+ PDF Chat Inequalities among two rowed immanants of the <i>q</i>-Laplacian of trees and odd height peaks in generalized Dyck paths 2022 Mukesh Kumar Nagar
Arbind K. Lal
Sivaramakrishnan Sivasubramanian
+ Eigenfunctions of the Laplacian Satisfying Hardy-Type Estimates on Homogeneous Trees 2024 Sumit Kumar Rano
+ Laplacian immanantal polynomials and the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="sans-serif">GTS</mml:mi></mml:math> poset on trees 2018 Mukesh Kumar Nagar
Sivaramakrishnan Sivasubramanian
+ On the Laplacian Spectrum and Walk-regular Hypergraphs 2003 J.A. Rodrı́guez
+ Harnack’s inequality and Green’s functions on locally finite graphs 2018 Li Ma
+ Determinants of the Laplacians 2011 H. M. Srivástava
Junesang Choi
+ Moser's inequality and n-Laplacian 1997 Kai-Ching Lin
+ Laplacian coefficients of trees 2020 Ali Ghalavand
Али Реза Ашрафи
+ PDF Chat The Laplacian permanental polynomial for trees 1982 Russell Merris
+ Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees 2005 Yuan Hong
Xiao‐Dong Zhang