Multipliers in Hp(Rn), 0< p<∞

Type: Article

Publication Date: 1979-12-01

Citations: 4

DOI: https://doi.org/10.1007/bf02385470

Abstract

In this paper we develop some recent results of Calderdn and Torchinsky [2] concerning H p multipliers in order to present sharp conditions in terms of directional derivatives of the multiplier function m(~) which will assure that the associated translation invariant operator T defined by means of its Fourier transform by0~ suppf, preserve the Hardy spaces HP(R"), 0<p< ~o.In our context a tempered distribution f is in HP(R ") if M(u,x) = sup lu(y, t)l Q(x--y)~=t is in LP(R~), ItfLlup=llM(u)IIp, 0<p<~, where O(x) denotes the parabolic metric associated to the group {tP}t>0 with (Px, x)~(x,x), trace P=~, and u(y,t)= (f,q~t)(Y) is an extension of f to R+ +1 by means of convolution with a function q~t(y)=t-r~o(t-Py) in the Schwartz class S with non-vanishing integral, see [1].When P=I, ~=n and ~(x)=[x I these spaces coincide with the H p spaces of several real variables considered in [5].A bounded function re(C) is an H p multiplier with norm ~K if [IZfl]np<=gIIfll~t,.Since HP=L p for p>l and m is a multiplier in L p if and only if it is an L p' multiplier with lip § lip'= 1 we will assume throughout that p<=2.Bounded functions m(r are the L2(R ") multipliers.We study here conditions on the smoothness of rn(~) and on its decay, together with its derivatives, at infinity that will imply that m(~) is also a multiplier for some p<2.

Locations

  • Arkiv för matematik - View - PDF

Similar Works

Action Title Year Authors
+ MULTIPLIERS ON REAL HARDY SPACES 1992 Liu Z
+ PDF Chat Sharp Hardy Space Estimates for Multipliers 2020 Loukas Grafakos
Bae Jun Park
+ PDF Chat Multipliers of the Hardy space H<sup>1</sup>and power bounded operators 2001 Gilles Pisier
+ Sharp Hardy space estimates for multipliers 2019 Loukas Grafakos
Bae Jun Park
+ Sharp Hardy space estimates for multipliers 2019 Loukas Grafakos
Bae Jun Park
+ Multipliers of Hardy Spaces 2004 Beth Osikiewicz
+ Fourier multipliers on weighted $L^p$ spaces 2014 Sebastian Król
+ Fourier multipliers on weighted $L^p$ spaces 2014 Sebastian Król
+ Multipliers from Sobolev space $H^\al_p$ into $H^{-\al}_p$ 2003 М. И. Нейман-заде
А. А. Шкаликов
+ PDF Chat On<i>L</i><sup><i>p</i></sup>,<i>L</i><sup><i>q</i></sup>multipliers of Fourier transforms 1977 Richard J. Bagby
+ Multipliers in Hardy-Sobolev Spaces 2005 Joaquı́n M. Ortega
Joan Fàbrega
+ PDF Chat On the spectrum of multipliers in Bessel potential spaces 1985 Tatjana Olegovna Shaposhnikova
+ PDF Chat H<sup>p</sup> multipliers and inequalities of Hardy and Littlewood 1969 G. I. Gaudry
+ PDF Chat Fourier multipliers on weighted $L^p$ spaces 2014 Sebastian Król
+ PDF Chat Sharp Multiplier Theorem for Multidimensional Bessel Operators 2019 Edyta Kania
Marcin Preisner
+ PDF Chat On pointwise multipliers forF p, q s (ℝn) in caseσ p, q&lt;s&lt;n/p(*) 1999 Winfried Sickel
+ Multipliers in Bessel potential spaces. The case of different sign smooth indices 2018 A. A. Belyaev
А. А. Шкаликов
+ PDF Chat Fourier multiplier theorems for Triebel–Lizorkin spaces 2018 Bae Jun Park
+ PDF Chat Multipliers and Wiener-Hopf operators on weighted L p spaces 2012 Violeta Petkova
+ PDF Chat A sharp variant of the Marcinkiewicz theorem with multipliers in Sobolev spaces of Lorentz type 2021 Loukas Grafakos
Mieczysław Mastyło
Lenka Slavíková