Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System

Type: Article

Publication Date: 2017-03-22

Citations: 9

DOI: https://doi.org/10.3842/sigma.2017.018

Abstract

A class of nonlinear Schr\"odinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlev\'e II equation which is linked, in turn, to the integrable Painlev\'e XXXIV equation. A nonlinear Schr\"odinger encapsulation of a Korteweg-type capillary system is thereby used in the isolation of such a Ermakov-Painlev\'e II reduction valid for a multi-parameter class of free energy functions. Iterated application of a B\"acklund transformation then allows the construction of novel classes of exact solutions of the nonlinear capillarity system in terms of Yablonskii-Vorob'ev polynomials or classical Airy functions. A Painlev\'e XXXIV equation is derived for the density in the capillarity system and seen to correspond to the symmetry reduction of its Bernoulli integral of motion.

Locations

  • Symmetry Integrability and Geometry Methods and Applications - View - PDF
  • arXiv (Cornell University) - View - PDF
  • The scientific electronic library of periodicals of the National Academy of Sciences of Ukraine (National Academy of Sciences of Ukraine) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The Korteweg capillarity system. Integrable reduction via gauge and reciprocal links 2015 C. Rogers
+ PDF Chat On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem 2015 Pablo Amster
C. Rogers
+ PDF Chat Hybrid Ermakov-Painlevé IV Systems 2014 C. Rogers
+ PDF Chat On Hybrid Ermakov-Painlevé Systems. Integrable Reduction 2017 C. Rogers
+ Integrable Nonlinear Equations (Discrete Case) 1997 L. A. Sakhnovich
+ Korteweg-de Vries Equation 2015 Alper Korkmaz
+ Korteweg-de Vries Equation 2009 Felipe Linares
Gustavo Ponce
+ On a Dirichlet boundary value problem for an Ermakov–Painlevé I equation. A Hamiltonian EPI system 2023 Pablo Amster
C. Rogers
+ On integrable Ermakov–Painlevé IV systems 2018 C. Rogers
Andrew P. Bassom
Peter A. Clarkson
+ PDF Chat On Dirichlet two-point boundary value problems for the Ermakov–Painlevé IV equation 2014 Pablo Amster
C. Rogers
+ A short note on the Painlevé XXV–Ermakov equation 2022 Sandra Carillo
Alexander Chichurin
Galina Filipuk
Federico Zullo
+ On Ermakov–Painlevé II systems. Integrable reduction 2016 C. Rogers
W. K. Schief
+ Nonlinear Integrable Equations 1987 B. G. Konopelchenko
+ A novel Riemann–Hilbert formulation-based reduction method to an integrable reverse-space nonlocal Manakov equation and its applications 2025 Jian Wu
+ Painlevé analysis of a new integrable nonautonomous Korteweg-de Vries (K-dV) equation 1997 T. Alagesan
A. Uthayakumar
K. Porsezian
+ PDF Chat The Ermakov equation: A commentary 2008 P. G. L. Leach
S.K. Andriopoulos
+ Some integrable aspects of non-commutative and quantum Painlevé II equations 2014 Irfan Mahmood
+ PDF Chat THE KORTEWEG–DE VRIES EQUATION 1989
+ Integral Equations and Connection Formulae for the Painlevé Equations 1992 Peter A. Clarkson
J. B. McLeod
+ Integrable variational equations of non-integrable systems 2012 Andrzej J. Maciejewski
Maria Przybylska