Odd values of the Ramanujan $\tau$-function

Type: Article

Publication Date: 1987-01-01

Citations: 30

DOI: https://doi.org/10.24033/bsmf.2083

Abstract

R^SI'MF -Soil T la fonction de Ramanujan.Nous prouvons qu'il exisle une effeciivement calculable conslante (•>() ahsoluc.lei que si T(n) esi impaire.alors jT(n)j^(logrt)'.Nous ulilisons les resuliats sur les formes lineaires des loganthmes.ABSTRACT -Lei T denote Ramanujan's function.We prove that there exists an effectively computable absolute constant t >0 such that if T(n) is odd.then JT(n)j^(logn)'.We use results on linear forms in logarithms.Ramanujan's T-function is defined by the relation ^n^n-^) 24 -!:., 1 Ît is conjectured by ATKIN and SERRE (6, equation 4. 11 A;] that for any c>0.l^)!^9 2 În particular this implies that for any a, there are only finitely many primes p such that T(/?)=U.In this note.we study a related, though simpler, question.Our main result is the following.(•» Textc re<;u Ie 7 avnl 19Hh

Locations

  • Bulletin de la Société mathématique de France - View - PDF

Similar Works

Action Title Year Authors
+ Odd values of the Ramanujan tau function 2021 Michael A. Bennett
Adela Gherga
Vandita Patel
Samir Siksek
+ Odd values of the Ramanujan tau function 2021 Mike Bennett
Adela Gherga
Vandita Patel
Samir Siksek
+ PDF Chat Odd values of the Ramanujan tau function 2021 Michael A. Bennett
Adela Gherga
Vandita Patel
Samir Siksek
+ Ramanujan’s Tau Function 2017 Michael D. Hirschhorn
+ A formula for Ramanujan's $\tau$-function 1975 Douglas Niebur
+ Counting numbers in multiplicative sets: Landau versus Ramanujan 2011 Pieter Moree
+ Historical Remark on Ramanujan′s Tau Function 2015 Kenneth S. Williams
+ Ramanujan y la función T(n) 1980 Z.E Ramos
+ PDF Chat Note on Ramanujan's Function $\tau(n)$. 1962 O. Kolberg
+ A Congruence Property of Ramanujan's Function τ (n) 2015 R P Bambah and S Chowla
+ Some Remarks on Small Values of $\tau(n)$ 2021 Kaya Lakein
Anne Larsen
+ Rogers-Ramanujan Type Identities and Combinatorics 2016 Jasdeep Kaur
Meenakshi Rana
+ An identity of Ramanujan and its combinatorics 2024 Bernard L. S. Lin
Xiaowei Lin
Lei Zhang
+ Congruence properties of Ramanujan’s function τ(n) 1944 K. G. Ramanathan
+ The Life and Works of K.G Ramanathan 2022 Maitreyo Bhattacharjee
+ Bounds on the Number of Primes in Ramanujan Interval 2021 Jan Feliksiak
+ Counting numbers in multiplicative sets: Landau versus Ramanujan 2013 Pieter Moree
+ Counting numbers in multiplicative sets: Landau versus Ramanujan 2011 Pieter Moree
+ Prime values of Ramanujan's tau function 2023 Boyuan Xiong
+ A Formula for Ramanujan's Tau Function 1984 John A. Ewell

Works Cited by This (1)

Action Title Year Authors
+ Rational approximations to algebraic numbers 1955 H. Davenport
K. F. Roth