Lévy flights in the presence of a point sink of finite strength

Type: Article

Publication Date: 2017-01-27

Citations: 11

DOI: https://doi.org/10.1103/physreve.95.012154

Abstract

In this paper, the absorption of a particle undergoing L\'{e}vy flight in the presence of a point sink of arbitrary strength and position is studied. The motion of such a particle is given by a modified Fokker-Planck equation whose exact solution in the Laplace domain can be described in terms of the Laplace transform of the unperturbed (absence of the sink) Green's function. This solution for the Green's function is a well-studied, generic result which applies to both fractional and usual Fokker-Planck equations alike. Using this result, the propagator and the absorption time distribution are obtained for free L\'{e}vy flight and L\'{e}vy flight in linear and harmonic potentials in the presence of a delta function sink, and their dependence on the sink strength is analyzed. Analytical results are presented for the long-time behaviour of the absorption time distribution in all the three above mentioned potentials. Simulation results are found to corroborate closely with the analytical results.

Locations

  • Physical review. E - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Path-integral formulation for Lévy flights: Evaluation of the propagator for free, linear, and harmonic potentials in the over- and underdamped limits 2012 Deepika Janakiraman
K. L. Sebastian
+ PDF Chat Steady-state Lévy flights in a confined domain 2008 S. I. Denisov
Werner Horsthemke
Peter Hänggi
+ Introduction to the Theory of Lévy Flights 2008 Aleksei V. Chechkin
Ralf Metzler
J. Klafter
V.Yu. Gonchar
+ PDF Chat Lévy flights on the half line 2012 Reinaldo García‐García
Alberto Rosso
Grégory Schehr
+ PDF Chat Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions 1999 Sune Nørhøj Jespersen
Ralf Metzler
Hans C. Fogedby
+ Enhancement of stability of metastable states in the presence of Lévy noise 2023 A. A. Dubkov
Claudio Guarcello
Bernardo Spagnolo
+ The problem of analytical calculation of barrier crossing characteristics for Lévy flights 2009 A. A. Dubkov
Angelo La Cognata
Bernardo Spagnolo
+ PDF Chat LÉVY FLIGHT SUPERDIFFUSION: AN INTRODUCTION 2008 A. A. Dubkov
Bernardo Spagnolo
V. V. Uchaikin
+ PDF Chat Fractional Fokker-Planck equation for Lévy flights in nonhomogeneous environments 2009 T. Srokowski
+ PDF Chat Automodel solutions for superdiffusive transport by Lévy walks 2019 A. B. Kukushkin
Andrei A. Kulichenko
+ Lévy flights 2011 J. Klafter
I.M. Sokolov
+ PDF Chat Lévy anomalous diffusion and fractional Fokker–Planck equation 2000 Vladimir Yanovsky
Aleksei V. Chechkin
Daniel Schertzer
A. V. Tur
+ Lévy random walks in a semi-bounded domain: a perturbative approach 2011 Reinaldo García‐García
Alberto Rosso
Grégory Schehr
+ PDF Chat Spectral properties of the fractional Fokker-Planck operator for the Lévy flight in a harmonic potential 2014 Ralf Toenjes
Igor M. Sokolov
Eugene B. Postnikov
+ Lévy Statistics and Anomalous Transport: Lévy flights and Subdiffusion 2007 Ralf Metzler
Aleksei V. Chechkin
J. Klafter
+ Realization of Levy flights as continuous processes 2007 Ihor Lubashevsky
R. Friedrich
Andreas Heuer
+ Transport in the spatially tempered, fractional Fokker–Planck equation 2012 A. Kullberg
D. del-Castillo-Negrete
+ PDF Chat Lévy walks with variable waiting time: A ballistic case 2018 A. Kamińska
T. Srokowski
+ Fundamentals of Lévy Flight Processes 2006 Aleksei V. Chechkin
V.Yu. Gonchar
J. Klafter
Ralf Metzler
+ PDF Chat Lévy flights with power-law absorption 2015 Luca Cattivelli
Elena Agliari
Fabio Sartori
Davide Cassi

Works Cited by This (16)

Action Title Year Authors
+ The H-Function : Theory and Applications 2010 A. M. Mathai
Rajendra K. Saxena
H. J. Haubold
+ Paradoxal Diffusion in Chemical Space for Nearest-Neighbor Walks over Polymer Chains 1997 Igor M. Sokolov
J. Mai
A. Blumen
+ PDF Chat Leapover Lengths and First Passage Time Statistics for Lévy Flights 2007 Tal Koren
Michael A. Lomholt
Aleksei V. Chechkin
J. Klafter
Ralf Metzler
+ PDF Chat Unusual eigenvalue spectrum and relaxation in the Lévy–Ornstein-Uhlenbeck process 2014 Deepika Janakiraman
K. L. Sebastian
+ From continuous time random walks to the fractional Fokker-Planck equation 2000 Eli Barkai
Ralf Metzler
J. Klafter
+ PDF Chat First passage and arrival time densities for Lévy flights and the failure of the method of images 2003 Aleksei V. Chechkin
Ralf Metzler
V.Yu. Gonchar
J. Klafter
L. V. Tanatarov
+ PDF Chat Path-integral formulation for Lévy flights: Evaluation of the propagator for free, linear, and harmonic potentials in the over- and underdamped limits 2012 Deepika Janakiraman
K. L. Sebastian
+ PDF Chat Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions 1999 Sune Nørhøj Jespersen
Ralf Metzler
Hans C. Fogedby
+ Scale-free animal movement patterns: Lévy walks outperform fractional Brownian motions and fractional Lévy motions in random search scenarios 2009 Andy M. Reynolds
+ PDF Chat Optimal Target Search on a Fast-Folding Polymer Chain with Volume Exchange 2005 Michael A. Lomholt
Tobias Ambjörnsson
Ralf Metzler