Mixed and Hybrid Finite Element Methods for Convection-Diffusion Problems and Their Relationships with Finite Volume: The Multi-Dimensional Case

Type: Article

Publication Date: 2017-01-09

Citations: 3

DOI: https://doi.org/10.5539/jmr.v9n1p68

Abstract

We introduced in (Fortin & Serghini Mounim, 2005) a new method which allows us to extend the connection between the finite volume and dual mixed hybrid (DMH) methods to advection-diffusion problems in the one-dimensional case. In the present work we propose to extend the results of (Fortin & Serghini Mounim, 2005) to multidimensional hyperbolic and parabolic problems. The numerical approximation is achieved using the Raviart-Thomas (Raviart & Thomas, 1977) finite elements of lowest degree on triangular or rectangular partitions. We show the link with numerous finite volume schemes by use of appropriate numerical integrations. This will permit a better understanding of these finite volume schemes and the large number of DMH results available could carry out their analysis in a unified fashion. Furthermore, a stabilized method is proposed. We end with some discussion on possible extensions of our schemes.

Locations

  • Journal of Mathematics Research - View - PDF

Similar Works

Action Title Year Authors
+ Analysis of an Upwind-Mixed Hybrid Finite Element Method for Transport Problems 2014 Fabian Brunner
Florin A. Radu
Peter Knabner
+ On Some Mixed Finite Element Methods with Numerical Integration 2001 Stefano Micheletti
Riccardo Sacco
Fausto Saleri
+ A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems 2009 Herbert Egger
Joachim Schöberl
+ A mixed-hybrid finite element method for convection–diffusion problems 2005 M. Farhloul
A. Serghini Mounim
+ Stabilization and a posteriori error analysis of a mixed FEM for convection–diffusion problems with mixed boundary conditions 2020 Marı́a GonzĂĄlez
Magdalena Strugaru
+ Hybrid numerical methods for convection–diffusion problems in arbitrary geometries 2003 Allen J. Toreja
Rizwan-uddin Rizwan-uddin
+ Error estimates for a mixed finite element discretization of some degenerate parabolic equations 2007 Florin A. Radu
I. Pop
Peter Knabner
+ PDF Chat Error estimates for a mixed finite element discretization of some degenerate parabolic equations 2008 Florin A. Radu
I. Pop
Peter Knabner
+ The Gradient Discretisation Method 2018 JĂ©rĂŽme Droniou
Robert Eymard
Thierry Gallouët
Cindy Guichard
RaphaĂšle Herbin
+ A Stabilized Dual Mixed Hybrid Finite Element Method with Lagrange multipliers for Three-Dimensional Problems with Internal Interfaces 2018 Riccardo Sacco
Aurelio Giancarlo Mauri
Giovanna Guidoboni
+ Coupling mixed and finite volume discretizations of convection-diffusion-reaction equations on non-matching grids 1999 Raytcho Lazarov
J Pasciaic
Panayot S. Vassilevski
+ Hermite finite elements for convection-diffusion equations 2015 Florin A. Radu
Vitoriano Ruas
Paulo Trales
+ Hermite finite elements for convection-diffusion equations 2015 Florin A. Radu
Vitoriano Ruas
Paulo Trales
+ Error estimates for the hybrid finite element/finite volume methods for linear hyperbolic and convection-dominated problems 2003 Moulay D. Tidriri
+ Combined Nonconforming/Mixed-hybrid Finite Element-Finite Volume Scheme for Degenerate Parabolic Problems 2004 Robert Eymard
Dorothea Hilhorst
Martin Vohralı́k
+ A New Error Estimate for a Primal-Dual Crank-Nicolson Mixed Finite Element Using Lowest Degree Raviart-Thomas Spaces for Parabolic Equations 2022 Fayssal Benkhaldoun
Abdallah Bradji
+ Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space 2015 Markus Bause
Florin A. Radu
Uwe Köcher
+ Numerical Solution of Partial Differential Equations 2005 K. W. Morton
D. F. Mayers
+ Error Eestimates for Mixed Finite Element Methods for Hyperbolic Type Integro-differential Equation 2005 Jiang Zi-wen
+ Two-grid Raviart-Thomas mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations 2020 Tianliang Hou
Luoping Chen
Yueting Yang
Yin Yang