Type: Article
Publication Date: 2016-03-24
Citations: 183
DOI: https://doi.org/10.1109/tit.2016.2546280
The binary symmetric stochastic block model deals with a random graph of n vertices partitioned into two equal-sized clusters, such that each pair of vertices is independently connected with probability p within clusters and q across clusters. In the asymptotic regime of p = a log n/n and q = b log n/n for fixed a, b, and n → ∞, we show that the semidefinite programming relaxation of the maximum likelihood estimator achieves the optimal threshold for exactly recovering the partition from the graph with probability tending to one, resolving a conjecture of Abbe et al. Furthermore, we show that the semidefinite programming relaxation also achieves the optimal recovery threshold in the planted dense subgraph model containing a single cluster of size proportional to n.