Elementary proof of logarithmic Sobolev inequalities for Gaussian convolutions on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ℝ</mml:mi></mml:math>

Type: Article

Publication Date: 2016-05-09

Citations: 7

DOI: https://doi.org/10.5802/ambp.357

Abstract

In a 2013 paper, the author showed that the convolution of a compactly supported measure on the real line with a Gaussian measure satisfies a logarithmic Sobolev inequality (LSI). In a 2014 paper, the author gave bounds for the optimal constants in these LSIs. In this paper, we give a simpler, elementary proof of this result.

Locations

  • Annales mathématiques Blaise Pascal - View - PDF
  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Elementary proof of logarithmic Sobolev inequalities for Gaussian convolutions on $\mathbb{R}$ 2014 David Zimmermann
+ Elementary proof of logarithmic Sobolev inequalities for Gaussian convolutions on $\mathbb{R}$ 2014 David Zimmermann
+ Bounds for logarithmic Sobolev constants for Gaussian convolutions of compactly supported measures 2014 David Zimmermann
+ Logarithmic Sobolev inequalities for mollified compactly supported measures 2013 David Zimmermann
+ PDF Chat Functional inequalities for Gaussian convolutions of compactly supported measures: Explicit bounds and dimension dependence 2017 Jean-Baptiste Bardet
Nathaël Gozlan
Florent Malrieu
Pierre-André Zitt
+ Logarithmic Sobolev inequalities for mollified compactly supported measures 2014 David Zimmermann
+ Logarithmic Sobolev inequalities for mollified compactly supported measures 2014 David Zimmermann
+ Functional inequalities for Gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence 2015 Jean-Baptiste Bardet
Nathaël Gozlan
Florent Malrieu
Pierre-André Zitt
+ Logarithmic Sobolev Inequalities for Gaussian Convolutions of Compactly Supported Measures 2015 David Zimmermann
+ Functional inequalities for Gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence 2015 Jean-Baptiste Bardet
Nathaël Gozlan
Florent Malrieu
Pierre-André Zitt
+ Weighted Logarithmic Sobolev Inequalities for Sub-Gaussian Measures 2011 Bin Qian
Zhengliang Zhang
+ PDF Chat A Dimension-Free Reverse Logarithmic Sobolev Inequality for Low-Complexity Functions in Gaussian Space 2020 Ronen Eldan
Michel Ledoux
+ Logarithmic Sobolev inequality revisited 2017 Hoài-Minh Nguyên
Marco Squassina
+ PDF Chat Analytic and Geometric Logarithmic Sobolev Inequalities 2012 Michel Ledoux
+ Logarithmic Sobolev inequality for symmetric forms 2000 Mu-Fa Chen
+ Logarithmic Sobolev Trace Inequalities 2011 Filomena Feo
Maria Rosaria Posteraro
+ A proof of a logarithmic Sobolev inequality 1993 Elena Pelliccia
Giorgio Talenti
+ PDF Chat Logarithmic Sobolev inequality revisited 2017 Hoài-Minh Nguyên
Marco Squassina
+ PDF Chat Logarithmic Sobolev inequalities and the growth of 𝐿^{𝑝} norms 1998 O. S. Rothaus
+ Logarithmic Sobolev inequalities 1989 E. B. Davies