Bounds for KdV and the 1-d cubic NLS equation in rough function spaces

Type: Article

Publication Date: 2014-11-20

Citations: 0

DOI: https://doi.org/10.5802/slsedp.8

Abstract

We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Korteweg-de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori local in time H s bounds in terms of the H s size of the initial data for s≥-1 4 (joint work with D. Tataru, [15, 14]) , and the solutions to KdV satisfy global a priori estimate in H -1 (joint work with T. Buckmaster [2]).

Locations

  • Séminaire Laurent Schwartz — EDP et applications - View - PDF

Similar Works

Action Title Year Authors
+ Energy and local energy bounds for the 1-D cubic NLS equation in H^{-1/4} 2010 Herbert Koch
Daniel Tataru
+ Energy and local energy bounds for the 1-D cubic NLS equation in H^{-1/4} 2010 Herbert Koch
Daniel Tataru
+ PDF Chat Energy and local energy bounds for the 1-d cubic NLS equation in \( H^{- \frac{1}{4}} \) 2012 Herbert Koch
Daniel Tataru
+ A-priori bounds for the 1-d cubic NLS in negative Sobolev spaces 2006 Herbert Koch
Daniel Tataru
+ Decay of the radius of spatial analyticity for the modified KdV equation and the nonlinear Schrödinger equation with third order dispersion 2023 Renata O. Figueira
Mahendra Panthee
+ A-priori bounds for KdV equation below $H^{-3/4}$ 2011 Baoping Liu
+ Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension 2014 Mihaela Ifrim
Daniel Tataru
+ PDF Chat Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension 2015 Mihaela Ifrim
Daniel Tataru
+ Global well-posedness for the cubic nonlinear Schr{ö}dinger equation with initial lying in $L^{p}$-based Sobolev spaces 2020 Benjamin Dodson
Avy Soffer
Thomas Spencer
+ Non-existence of solutions for the periodic cubic NLS below $L^2$ 2015 Zihua Guo
Tadahiro Oh
+ Global bounds for the cubic nonlinear Schr\"odinger equation (NLS) in one space dimension 2014 Mihaela Ifrim
Daniel Tataru
+ PDF Chat Conserved energies for the cubic NLS in 1-d 2016 Herbert Koch
Daniel Tataru
+ Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces 2018 Tadahiro Oh
Yuzhao Wang
+ Almost sure local well-posedness for cubic nonlinear Schrodinger equation with higher order operators 2022 Jean‐Baptiste Casteras
Juraj Földes
Gennady Uraltsev
+ On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2017 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+ Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation 2019 Kihoon Seong
+ Modified scattering for small data solutions to the cubic Schrödinger equation on product space 2018 Grace Liu
+ PDF Chat Bilinear estimates and applications to 2d NLS 2001 J. Colliander
Jean-Marc Delort
Carlos E. Kenig
Gigliola Staffilani
+ Global existence and scattering for rough solutions of a nonlinear Schroedinger equation on R^3 2003 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2020 Vanessa Andrade de Barros
Simão Correia
Filipe Oliveira

Works That Cite This (0)

Action Title Year Authors