Maximum of the Riemann zeta function on a short interval of the critical line

Type: Preprint

Publication Date: 2016-12-27

Citations: 11

Similar Works

Action Title Year Authors
+ Maximum of the Riemann zeta function on a short interval of the critical line 2016 Louis‐Pierre Arguin
David Belius
Paul Bourgade
Maksym RadziwiƂƂ
K. Soundararajan
+ PDF Chat Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line 2018 Louis‐Pierre Arguin
David Belius
Paul Bourgade
Maksym RadziwiƂƂ
K. Soundararajan
+ PDF Chat The Fyodorov-Hiary-Keating Conjecture on Mesoscopic Intervals 2024 Louis‐Pierre Arguin
Jad Hamdan
+ The Fyodorov-Hiary-Keating Conjecture. II 2023 Louis‐Pierre Arguin
Paul Bourgade
Maksym RadziwiƂƂ
+ On the extreme values of the Riemann zeta function on random intervals of the critical line 2016 Joseph Najnudel
+ On the extreme values of the Riemann zeta function on random intervals of the critical line 2016 Joseph Najnudel
+ PDF Chat On the extreme values of the Riemann zeta function on random intervals of the critical line 2017 Joseph Najnudel
+ PDF Chat Moments of the Riemann zeta function on short intervals of the critical line 2021 Louis‐Pierre Arguin
Frédéric Ouimet
Maksym RadziwiƂƂ
+ The $a$-values of the Riemann zeta function near the critical line 2017 Junsoo Ha
Yoonbok Lee
+ The a-values of the Riemann zeta function near the critical line 2018 Junsoo Ha
Yoonbok Lee
+ Discretization of the maximum for the derivatives of a random model of $\log|\zeta|$ on the critical line 2019 Louis‐Pierre Arguin
Frédéric Ouimet
Christian Webb
+ Maxima of a Random Model of the Riemann Zeta Function over Intervals of Varying Length 2021 Louis‐Pierre Arguin
Guillaume Dubach
Lisa Hartung
+ Lower bounds for the Riemann zeta function on short intervals of the critical line 2015 Bryce Kerr
+ Discretization of the maximum for the derivatives of a random model of $\log|ζ|$ on the critical line 2019 Louis‐Pierre Arguin
Frédéric Ouimet
Christian Webb
+ PDF Chat Maxima of a randomized Riemann zeta function, and branching random walks 2017 Louis‐Pierre Arguin
David Belius
Adam J. Harper
+ An improved upper bound for the argument of the Riemann zeta-function on the critical line II 2013 Timothy S. Trudgian
+ The Fyodorov-Hiary-Keating Conjecture. I 2020 Louis‐Pierre Arguin
Paul Bourgade
Maksym RadziwiƂƂ
+ The Riemann zeta function in short intervals [after Najnudel, and Arguin, Belius, Bourgade, RadziwiƂƂ, and Soundararajan] 2019 Adam J. Harper
+ An estimate of the second moment of a sampling of the Riemann zeta function on the critical line 2014 Sihun Jo
Minsuk Yang
+ PDF Chat On large values of the Riemann zeta-function on short segments of the critical line 2014 Maxim Aleksandrovich Korolev