Oscillations of the sunflower equation

Type: Article

Publication Date: 1988-03-01

Citations: 13

DOI: https://doi.org/10.1090/qam/934678

Abstract

Consider the delay differential equation <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove y With two-dots left-parenthesis t right-parenthesis plus alpha ModifyingAbove y With dot left-parenthesis t right-parenthesis plus beta f left-parenthesis y left-parenthesis t minus r right-parenthesis right-parenthesis equals 0 comma left-parenthesis asterisk right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>y</mml:mi> <mml:mo>¨</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>α</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>y</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>y</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> <mml:mo>−</mml:mo> <mml:mi>r</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width="2em"/> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∗</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\ddot y\left ( t \right ) + \alpha \dot y\left ( t \right ) + \beta f\left ( {y\left ( {t - r} \right )} \right ) = 0, \qquad \left ( * \right )</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha comma beta"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha , \beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are positive constants and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a continuous function such that <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u f left-parenthesis u right-parenthesis greater-than 0 f o r u element-of left-bracket negative upper A comma upper B right-bracket comma u not-equals 0 comma a n d limit Underscript u right-arrow 0 Endscripts StartFraction f left-parenthesis u right-parenthesis Over u EndFraction equals 1 comma"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width="2em"/> <mml:mi>f</mml:mi> <mml:mi>o</mml:mi> <mml:mi>r</mml:mi> <mml:mi>u</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> <mml:mi>d</mml:mi> <mml:munder> <mml:mo form="prefix">lim</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>u</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:munder> <mml:mfrac> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mi>u</mml:mi> </mml:mfrac> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">uf\left ( u \right ) &gt; 0 \qquad for u \in \left [ { - A, B} \right ], u \ne 0, and \lim \limits _{u \to 0} \frac {{f\left ( u \right )}}{u} = 1,</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are positive numbers. When <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis u right-parenthesis equals sine u comma left-parenthesis asterisk right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>sin</mml:mi> <mml:mo>⁡</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∗</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">f\left ( u \right ) = \sin u, \left ( * \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the so-called “sunflower” equation, which describes the motion of the tip of the sunflower plant.

Locations

  • Quarterly of Applied Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A comparison result for the oscillation of delay differential equations 1992 G. Ladas
Chenyin Qian
Jinyuan Yan
+ PDF Chat Oscillation properties of two term linear differential equations 1971 G. A. Bogar
+ PDF Chat Oscillation and a class of linear delay differential equations 1977 David Lowell Lovelady
+ PDF Chat Necessary and sufficient conditions for oscillations of higher order delay differential equations 1984 G. Ladas
Y. G. Sficas
I. P. Stavroulakis
+ Dynamics of the difference equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si14.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>p</mml:mi><mml:mspace width="0.16667em" /><mml:msub><… 2008 Majid Jaberi Douraki
Mehdi Dehghan
Javad Mashreghi
+ PDF Chat Oscillation for Higher Order Dynamic Equations on Time Scales 2013 Taixiang Sun
Qiuli He
Hongjian Xi
Weiyong Yu
+ PDF Chat Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales 2014 Qiaoshun Yang
Lynn Erbe
Baoguo Jia
+ PDF Chat On oscillations for solutions of 𝑛th order differential equations 1972 Hiroshi Onose
+ PDF Chat On oscillation of nonlinear delay differential equations 1987 M. R. S. Kulenović
G. Ladas
A. Meimaridou
+ PDF Chat Oscillation and comparison for second order differential equations 1975 Keith Schrader
+ Oscillation of Difference Equations 2000 Ravi P. Agarwal
Said R. Grace
Donal O’Regan
+ PDF Chat Oscillation of difference equations 1993 B. S. Lalli
B. Zhang
+ PDF Chat Oscillation results on linear systems of difference equations 1995 Qingkai Kong
+ Oscillation of delay differential equations 1997 Jozef Džurina
+ Global analysis of the sunflower equation with small delay 1999 Marcos Lizana
+ PDF Chat Oscillatory Behaviour of a First-Order Neutral Differential Equation in relation to an Old Open Problem 2020 Kali Charan Panda
Radhanath Rath
Subhendu Kumar Rath
+ PDF Chat Differential delay equations that have periodic solutions of long period 1988 Steven Chapin
+ Differential Equations 1976 D. M. Hirst
+ Perturbations of delay equations 2020 Luís Barreira
Clàudìa Valls
+ PDF Chat Oscillations in neutral equations with periodic coefficients 1991 G. Ladas
Ch. G. Philos
Y. G. Sficas