The large $k$-term progression-free sets in $\mathbb{Z}_q^n$

Type: Preprint

Publication Date: 2016-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1610.00247

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The large progression-free sets in Z_q^n 2016 Hongze Li
+ A note on the large progression-free sets in Z_q^n 2016 Hongze Li
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PƩter PƔl Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PƩter PƔl Pach
+ Large Subsets of $\mathbb{Z}_m^n$ without Arithmetic Progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 GĆ”bor HegedĆ¼s
+ Sets avoiding $p$-term arithmetic progressions in ${\mathbb Z}_{q}^n$ are exponentially small 2020 GĆ”bor HegedĆ¼s
+ Asymptotic upper bounds on progression-free sets in $\mathbb{Z}_p^n$ 2016 Dion Gijswijt
+ PDF Chat Large subsets of $$\mathbb {Z}_m^n$$ without arithmetic progressions 2022 Christian Elsholtz
Benjamin Klahn
Gabriel F. Lipnik
+ New lower bounds for three-term progression free sets in $\mathbb{F}_p^n$ 2024 Christian Elsholtz
Laura Proske
Lisa Sauermann
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
PƩter PƔl Pach
+ Caps and progression-free sets in $\mathbb{Z}_m^n$ 2019 Christian Elsholtz
PƩter PƔl Pach
+ PDF Chat More on maximal line-free sets in $\mathbb{F}_p^n$ 2024 Jakob FĆ¼hrer
+ PDF Chat The $3k-4$ Theorem modulo a Prime: High Density for $A+B$ 2024 David J. Grynkiewicz
+ PDF Chat Sets of Integers that do not Contain Long Arithmetic Progressions 2011 Kevin Oā€™Bryant
+ PDF Chat Progression-free sets in $\mathbb{Z}_4^n$ are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
PƩter PƔl Pach
+ The Kelley--Meka bounds for sets free of three-term arithmetic progressions 2023 Thomas F. Bloom
Olof Sisask
+ Sets avoiding six-term arithmetic progressions in $\mathbb{Z}_6^n$ are exponentially small 2020 PƩter PƔl Pach
RichƔrd Palincza
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata

Works That Cite This (0)

Action Title Year Authors