Frequency Localized Regularity Criteria for the 3D Navier–Stokes Equations

Type: Article

Publication Date: 2016-11-24

Citations: 12

DOI: https://doi.org/10.1007/s00205-016-1069-9

Locations

  • Archive for Rational Mechanics and Analysis - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Local regularity criteria of the 3D Navier–Stokes and related equations 2016 Yanqing Wang
Gang Wu
+ Regularity for 3D Navier-Stokes Equations Based on Energy Distribution at Wavenumber Bands 2019 Myong‐Hwan Ri
+ Energy-Based Regularity Criteria for the Navier–Stokes Equations 2008 Reinhard Farwig
Hideo Kozono
Hermann Sohr
+ Regularity criterion in terms of the oscillation of pressure for the 3D Navier–Stokes equations 2023 Dongho Chae
+ A regularity criterion for the solutions of 3D Navier–Stokes equations 2008 Xicheng Zhang
+ A localized criterion for the regularity of solutions to Navier-Stokes equations 2024 Congming Li
Chenkai Liu
Ran Zhuo
+ PDF Chat A Localized Criterion for the Regularity of Solutions to Navier-Stokes Equations 2024 Congming Li
Chenkai Liu
Ran Zhuo
+ Remarks on regularity criteria for the 3d Navier–Stokes equations 2022 Qiao Liu
Mei-Ling Pan
+ Localized Anisotropic Regularity Conditions for the Navier–Stokes Equations 2017 Igor Kukavica
Walter Rusin
Mohammed Ziane
+ Regularity criteria for the 3D density-dependent incompressible Maxwell–Navier–Stokes system 2017 Jishan Fan
Yong Zhou
+ $$\varepsilon $$-Regularity criteria for the 3D Navier–Stokes equations in Lorentz spaces 2020 Yanqing Wang
Wei Wei
Huan Yu
+ Regularity Criteria for Navier-Stokes Solutions 2016 G. Serëgin
Vladimír Šverák
+ Regularity Criteria for Navier-Stokes Solutions 2018 G. Serëgin
Vladimír Šverák
+ Remarks on regularity criteria for the 3D Navier-Stokes equations 2014 Ruiying Wei
Li Yin
+ Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain 2003 Yong Zhou
+ Regularity criteria for 3D Navier–Stokes equations in terms of finite frequency parts of velocity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si10.svg"><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mo>̇</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mi>∞</mml:mi><mml:mo>,</mml:mo><mml:mi>∞</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup… 2019 Myong‐Hwan Ri
+ Two regularity criteria for 3D Navier-Stokes equations in a bounded domain 2016 Jishan Fan
Fucai Li
Gen Nakamura
+ PDF Chat High–low frequency slaving and regularity issues in the 3D Navier–Stokes equations 2015 John Gibbon
+ Some regularity criteria for the 3D generalized Navier–Stokes equations 2021 Jae‐Myoung Kim
+ PDF Chat A Regularity Criterion for the Weak Solutions to the Navier–Stokes–Fourier System 2013 Eduard Feireisl
Antonín Novotný
Yongzhong Sun

Works That Cite This (12)

Action Title Year Authors
+ PDF Chat Uniform Stabilization of 3D Navier–Stokes Equations in Low Regularity Besov Spaces with Finite Dimensional, Tangential-Like Boundary, Localized Feedback Controllers 2021 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ PDF Chat A Beale–Kato–Majda Criterion with Optimal Frequency and Temporal Localization 2019 Xiaoyutao Luo
+ A Regularity Criterion for Solutions to the 3D NSE in `Dynamically Restricted' Local Morrey Spaces 2019 Zoran Grujić
Liaosha Xu
+ PDF Chat Effect of Vorticity Coherence on Energy–Enstrophy Bounds for the 3D Navier–Stokes Equations 2015 Radu Dascaliuc
Zoran Grujić
Michael S. Jolly
+ Global regularity for solutions of the Navier-Stokes equation sufficiently close to being eigenfunctions of the Laplacian 2020 Evan Miller
+ PDF Chat Remarks on sparseness and regularity of Navier–Stokes solutions 2022 Dallas Albritton
Zachary Bradshaw
+ PDF Chat Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian 2021 Evan Miller
+ Regularity criterion for weak solutions to the 3D Navier–Stokes equations via two vorticity components in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si8.svg"><mml:mrow><mml:mi>B</mml:mi><mml:mi>M</mml:mi><mml:msup><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> 2020 O Chol-Jun
+ PDF Chat On the Local Pressure Expansion for the Navier–Stokes Equations 2021 Zachary Bradshaw
Tai‐Peng Tsai
+ On the local pressure expansion for the Navier-Stokes equations 2020 Zachary Bradshaw
Tai‐Peng Tsai