Classifying $GL(2,\mathbb Z) \ltimes \mathbb Z^{2}$-orbits by subgroups of $\mathbb R$

Type: Preprint

Publication Date: 2014-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1401.3708

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Classifying orbits of the affine group over the integers 2015 Leonardo Manuel Cabrer
Daniele Mundici
+ Classifying $\mathsf{GL}(n,\mathbb Z)$-orbits of points and rational subspaces 2015 Leonardo Manuel Cabrer
Daniele Mundici
+ Basic geometry of the affine group over Z 2019 Daniele Mundici
+ Basic geometry of the affine group over Z 2019 Daniele Mundici
+ PDF Chat Classifying GL$(n,\mathbb{Z})$-orbits of points and rational subspaces 2016 Daniele Mundici
Leonardo Manuel Cabrer
+ Polyhedral Groups in $G_2(\mathbb{C})$ 2022 Vincent Knibbeler
Sara Lombardo
Casper Oelen
+ PDF Chat Polyhedral groups in 2022 Vincent Knibbeler
Sara Lombardo
Casper Oelen
+ Arithmeticity of groups $\mathbb Z^n\rtimes\mathbb Z$ 2020 Bena Tshishiku
+ Arithmeticity of groups $\mathbb Z^n\rtimes\mathbb Z$ 2020 Bena Tshishiku
+ Balanced $C_6$-Bowtie Designs : $p$-Orbits and $L$-orbits (Finite Groups and Algebraic Combinatorics) 2008 Kazuhiko Ushio
+ PDF Chat BILLIARD COMPLEXITY IN RATIONAL POLYHEDRA 2003 Nicolas Bédaride
+ Automorphism groups of 3-orbit polyhedra 2022 Isabel Hubard
Elías Mochán
+ PDF Chat Classification of affine symmetry groups of orbit polytopes 2017 Erik Friese
Frieder Ladisch
+ Freeness and $S$-arithmeticity of rational Möbius groups 2022 A. S. Detinko
D. L. Flannery
A. Hulpke
+ Complete and computable orbit invariants in the geometry of the affine group over the integers 2020 Daniele Mundici
+ Two-orbit polyhedra from groups 2009 Isabel Hubard
+ PDF Chat On the classification of stably reflective hyperbolic Z[√2]-lattices of rank 4 2019 Nikolay Bogachev
+ Affine groups and flag-transitive triplanes 2012 Huili Dong
Shenglin Zhou
+ PDF Chat Arithmetic results on orbits of linear groups 2015 Michael Giudici
Martin W. Liebeck
Cheryl E. Praeger
Jan Saxl
Pham Huu Tiep
+ Orbits of $Z \circ (2.O_8^+(2).2)$ in Dimension 8 2021 Frank Lübeck