Closure of singular foliations: the proof of Molino’s conjecture

Type: Article

Publication Date: 2017-09-13

Citations: 10

DOI: https://doi.org/10.1112/s0010437x17007485

Abstract

In this paper we prove the conjecture of Molino that for every singular Riemannian foliation $(M,\mathcal{F})$, the partition $\bar{\mathcal{F}}$ given by the closures of the leaves of $\mathcal{F}$ is again a singular Riemannian foliation.

Locations

  • arXiv (Cornell University) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF
  • DataCite API - View
  • Compositio Mathematica - View

Similar Works

Action Title Year Authors
+ PDF Chat Desingularization of singular Riemannian foliation 2010 Marcos M. Alexandrino
+ PDF Chat Cohomological tautness of singular Riemannian foliations 2018 José Ignacio Royo Prieto
Martintxo Saralegi-Aranguren
Robert Wolak
+ Singular Riemannian Foliations 1988 Pierre Molino
+ LEAF CLOSURES IN RIEMANNIAN FOLIATIONS 1988 André Haefliger
+ Compact leaves in minimal Riemannian foliations 1994 Robert Wolak
+ A Weyl's Law for Singular Riemannian Foliations with Applications to Invariant Theory 2023 Samuel Lin
Ricardo A. E. Mendes
Marco Radeschi
+ On the topology of leaves of singular Riemannian foliations 2022 Marco Radeschi
Elahe Khalili Samani
+ PDF Chat Leaf closures of Riemannian foliations: A survey on topological and geometric aspects of Killing foliations 2021 Marcos M. Alexandrino
Francisco C. Caramello
+ PDF Chat Proofs of Conjectures about Singular Riemannian Foliations 2006 Marcos M. Alexandrino
+ Leaf Space Isometries of Singular Riemannian Foliations and Their Spectral Properties 2017 Ian Adelstein
M. R. Sandoval
+ On the topology of leaves of singular Riemannian foliations 2023 Marco Radeschi
Elahe Khalili Samani
+ PDF Chat The BIC of a singular foliation defined by an abelian group of isometries 2006 Martintxo Saralegi-Aranguren
Robert Wolak
+ PDF Chat Structure of a Morse form foliation on a closed surface in terms of genus 2011 Irina Gelbukh
+ Leaf closures of Riemannian foliations: a survey on topological and geometric aspects of Killing foliations 2020 Marcos M. Alexandrino
Francisco C. Caramello
+ Algebraic nature of singular Riemannian foliations in spheres 2015 Alexander Lytchak
Marco Radeschi
+ Algebraic nature of singular Riemannian foliations in spheres 2015 Alexander Lytchak
Marco Radeschi
+ Progress in the theory of singular Riemannian foliations 2013 Marcos M. Alexandrino
Rafael Briquet
Dirk Töben
+ Compact and locally dense leaves of a closed one-form foliation 2018 Irina Gelbukh
+ Leaf closures of Riemannian foliations: a survey on topological and geometric aspects of Killing foliations 2020 Marcos M. Alexandrino
Francisco C. Caramello
+ PDF Chat The neighborhood of a singular leaf 2021 Camille Laurent-Gengoux
Leonid Ryvkin