Singularity-free model of electrically charged fermionic particles and gauged <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Q</mml:mi></mml:mrow></mml:math> -balls

Type: Article

Publication Date: 2016-11-28

Citations: 16

DOI: https://doi.org/10.1103/physrevd.94.096012

Abstract

We propose a model of an electrically charged fermion as a regular localized solution of electromagnetic and spinor fields interacting with a physical vacuum, which is phenomenologically described as a logarithmic superfluid. We analytically study the asymptotic behavior of the solution, while obtaining its form by numerical methods. The solution has physically plausible properties, such as finite size, self-energy, total charge and mass. In the case of spherical symmetry, its electric field obeys the Coulomb asymptotics at large distances from its core. It is shown that the observable rest mass of the fermion arises as a result of interaction of the fields with the physical vacuum. The spinor and scalar field components of the solution decay exponentially outside the core; therefore they can be regarded as internal degrees of freedom which can only be probed at sufficiently large scales of energy and momentum. Apart from conventional Fermi particles, our model can find applications in a theory of exotic localized objects, such as U(1) gauged Q-balls with half-integer spin.

Locations

  • Physical review. D/Physical review. D. - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Singularity-free model of electric charge in physical vacuum: non-zero spatial extent and mass generation 2013 Vladimir Dzhunushaliev
Konstantin G. Zloshchastiev
+ PDF Chat Understanding <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math> -balls beyond the thin-wall limit 2021 Julian Heeck
Arvind Rajaraman
Rebecca Riley
Christopher B. Verhaaren
+ PDF Chat Some properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>gauged<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-balls 2015 I. E. Gulamov
Emin Nugaev
A. G. Panin
Mikhail N. Smolyakov
+ Q-balls in the presence of attractive force 2024 Yu Hamada
Kiyoharu Kawana
TaeHun Kim
Philip Lu
+ PDF Chat Mapping gauged <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math> -balls 2021 Julian Heeck
Arvind Rajaraman
Rebecca Riley
Christopher B. Verhaaren
+ The further analytical discussions on the $U(1)$ gauged Q-balls with $N$-power potential 2017 Yue Zhong
Lingshen Chen
Hongbo Cheng
+ PDF Chat Q-BALLS CONSTRUCTED OF SPINORS IN LAGRANGIANS WITH <font>SU</font>(2) SYMMETRY 2005 Athanasios Prikas
+ Split Q-balls 2016 D. Bazeia
L. Losano
M. A. Marques
R. Menezes
+ PDF Chat Large gauged<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>balls 2001 螝蠅谓蟽蟿伪谓蟿委谓慰蟼 螒谓伪纬谓蠅蟽蟿蠈蟺慰蠀位慰蟼
Minos Axenides
E.G. Floratos
N. Tetradis
+ PDF Chat Q-BALLS WITH SCALAR CHARGE 2011 A. Levin
V. A. Rubakov
+ PDF Chat Charged Q-Balls in Gauge Mediated SUSY Breaking Models 2017 Jeong-Pyon Hong
Masahiro Kawasaki
Masaki Yamada
+ Charge-Swapping Q-balls in a Logarithmic Potential and Affleck-Dine condensate fragmentation 2022 Si-Yuan Hou
Paul M. Saffin
Qi-Xin Xie
Shuang-Yong Zhou
+ PDF Chat Q-ball formation at the deconfinement temperature in large-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:math>QCD 2013 Yves Brihaye
Fabien Buisseret
+ PDF Chat What are universal features of gravitating<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-balls? 2011 Takashi Tamaki
Nobuyuki Sakai
+ PDF Chat Charged<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-balls in gauge mediated SUSY breaking models 2015 Jeong-Pyong Hong
Masahiro Kawasaki
Masaki Yamada
+ PDF Chat From topological to nontopological solitons: Kinks, domain walls, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-balls in a scalar field model with a nontrivial vacuum manifold 2015 Yves Brihaye
Adolfo Cisterna
Betti Hartmann
Gabriel Luchini
+ PDF Chat Real Time Dynamics and Confinement in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math> Schwinger-Weyl lattice model for 1+1 QED 2020 Giuseppe Magnifico
Marcello Dalmonte
Paolo Facchi
Saverio Pascazio
Francesco V. Pepe
Elisa Ercolessi
+ PDF Chat Q-chains in the U(1)-gauged Friedberg-Lee-Sirlin model 2021 V. Loiko
I. Perapechka
Ya. Shnir
+ PDF Chat Compact<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-balls and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-shells in a scalar electrodynamics 2009 H. Arod藕
Jakub Lis
+ PDF Chat Radiative corrections and instability of large Q-balls 2017 A. V. Kovtun
Emin Nugaev

Works Cited by This (8)

Action Title Year Authors
+ PDF Chat Relativistic Quantum Theory 2020 James E. Dodd
Ben Gripaios
+ PDF Chat Some properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>gauged<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-balls 2015 I. E. Gulamov
Emin Nugaev
A. G. Panin
Mikhail N. Smolyakov
+ PDF Chat Vacuum Cherenkov effect in logarithmic nonlinear quantum theory 2011 Konstantin G. Zloshchastiev
+ PDF Chat Theory of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>gauged<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>-balls revisited 2014 I. E. Gulamov
Emin Nugaev
Mikhail N. Smolyakov
+ PDF Chat Spinor field in a Bianchi type-I universe: Regular solutions 2001 Bijan Saha
+ PDF Chat Large gauged<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>balls 2001 螝蠅谓蟽蟿伪谓蟿委谓慰蟼 螒谓伪纬谓蠅蟽蟿蠈蟺慰蠀位慰蟼
Minos Axenides
E.G. Floratos
N. Tetradis
+ PDF Chat Canonical reduction for dilatonic gravity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>dimensions 2016 T Scott
Xiangdong Zhang
Robert B. Mann
G. J. Fee
+ PDF Chat Quantum Bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent 2011 袗. V. Avdeenkov
Konstantin G. Zloshchastiev