Extremes of the internal energy of the Potts model on cubic graphs

Type: Article

Publication Date: 2018-02-04

Citations: 14

DOI: https://doi.org/10.1002/rsa.20767

Abstract

Abstract We prove tight upper and lower bounds on the internal energy per particle (expected number of monochromatic edges per vertex) in the anti‐ferromagnetic Potts model on cubic graphs at every temperature and for all . This immediately implies corresponding tight bounds on the anti‐ferromagnetic Potts partition function. Taking the zero‐temperature limit gives new results in extremal combinatorics: the number of q ‐colorings of a 3‐regular graph, for any , is maximized by a union of 's. This proves the d = 3 case of a conjecture of Galvin and Tetali.

Locations

  • arXiv (Cornell University) - View - PDF
  • University of Birmingham Research Portal (University of Birmingham) - View - PDF
  • DataCite API - View
  • Random Structures and Algorithms - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Counting Proper Colourings in 4-Regular Graphs via the Potts Model 2018 Ewan Davies
+ PDF Chat Algorithms for the ferromagnetic Potts model on expanders 2024 Charlie Carlson
Ewan Davies
Nicolás Fraiman
Alexandra Kolla
Aditya Potukuchi
Corrine Yap
+ PDF Chat Algorithms for the ferromagnetic Potts model on expanders 2022 Charlie Carlson
Ewan Davies
Nicolás Fraiman
Alexandra Kolla
Aditya Potukuchi
Corrine Yap
+ Algorithms for the ferromagnetic Potts model on expanders 2022 Charlie Carlson
Ewan Davies
Nicolás Fraiman
Alexandra Kolla
Aditya Potukuchi
Corrine Yap
+ Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results 2013 Andreas Galanis
Daniel Štefankovič
Eric Vigoda
Linji Yang
+ PDF Chat Phase coexistence and torpid mixing in the 3-coloring model on ${\mathbb Z}^d$ 2015 David Galvin
Jeff Kahn
Dana Randall
Gregory B. Sorkin
+ Phase coexistence and torpid mixing in the 3-coloring model on Z^d 2012 David Galvin
Jeff Kahn
Dana Randall
Gregory B. Sorkin
+ A Personal List of Unsolved Problems Concerning Potts Models and Lattice Gases 2000 Alan D. Sokal
+ Rigidity of 3-colorings of the discrete torus 2013 Ohad N. Feldheim
Ron Peled
+ Rigidity of 3-colorings of the discrete torus 2013 Ohad N. Feldheim
Ron Peled
+ PDF Chat Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results 2016 Andreas Galanis
Daniel Štefankovič
Eric Vigoda
Linji Yang
+ Chromatic polynomials, Potts models and all that 2000 Alan D. Sokal
+ Uniqueness of the Gibbs measure for the anti-ferromagnetic Potts model on the infinite $Δ$-regular tree for large $Δ$ 2022 Ferenc Bencs
David de Boer
Pjotr Buys
Guus Regts
+ A Personal List of Unsolved Problems Concerning Lattice Gases and Antiferromagnetic Potts Models 2000 Alan D. Sokal
+ A Personal List of Unsolved Problems Concerning Lattice Gases and Antiferromagnetic Potts Models 2000 Alan D. Sokal
+ PDF Chat Potts Model on Infinite Graphs and the Limit of Chromatic Polynomials 2003 Aldo Procacci
Benedetto Scoppola
Victor Gerasimov
+ Long-range order in the 3-state antiferromagnetic Potts model in high dimensions 2015 Ohad N. Feldheim
Yinon Spinka
+ Long-range order in the 3-state antiferromagnetic Potts model in high dimensions 2015 Ohad N. Feldheim
Yinon Spinka
+ A little statistical mechanics for the graph theorist 2010 Laura Beaudin
Joanna A. Ellis-Monaghan
Greta Pangborn
Robert Shrock
+ Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results 2014 Andreas Galanis
Daniel Štefankovič
Eric Vigoda
Linji Yang