Uniqueness Results for Weak Leray–Hopf Solutions of the Navier–Stokes System with Initial Values in Critical Spaces

Type: Article

Publication Date: 2017-01-30

Citations: 26

DOI: https://doi.org/10.1007/s00021-017-0315-8

Locations

  • Journal of Mathematical Fluid Mechanics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Uniqueness results for viscous incompressible fluids 2017 Tobias Barker
+ Local Hadamard well-posedness results for the Navier-Stokes equations 2019 Tobias Barker
+ Weak Solutions to the Navier–Stokes Equations with Data in $$\mathbb {L}(3,\infty )$$ L ( 3 , ∞ ) 2017 Paolo Maremonti
+ Existence and Weak* Stability for the Navier-Stokes System with Initial Values in Critical Besov Spaces 2017 Tobias Barker
+ PDF Chat Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace” 2018 Charles Fefferman
James C. Robinson
José L. Rodrigo
+ Advances in the 3D Navier-Stokes Equations 2017 Michael Z. Zgurovsky
Pavlo O. Kasyanov
+ PDF Chat On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>-initial data 2016 G. Serëgin
Vladimír Šverák
+ Leray–Hopf solutions to Navier–Stokes equations with weakly converging initial data 2012 G. Serëgin
+ Existence of local suitable weak solutions to the Navier-Stokes equations for initial data in $L^{2}_{\rm loc} (\mathbb{R}^3)$ 2022 Dongho Chae
Joerg Wof
+ Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace" 2017 Wojciech S. Ożański
Benjamin C. Pooley
+ Leray-Hopf and Continuity Properties for All Weak Solutions for the 3D~Navier-Stokes Equations 2015 Nataliia V. Gorban
Pavlo O. Kasyanov
Olha V. Khomenko
Luisa Toscano
+ Leray-Hopf and Continuity Properties for All Weak Solutions for the 3D~Navier-Stokes Equations 2015 Nataliia V. Gorban
Pavlo O. Kasyanov
Olha V. Khomenko
Luisa Toscano
+ PDF Chat On the continuity of the solutions to the Navier–Stokes equations with initial data in critical Besov spaces 2019 Reinhard Farwig
Yoshikazu Giga
Pen-Yuan Hsu
+ On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large $L_3$-initial data 2016 G. Serëgin
Vladimír Šverák
+ On the continuity of the solutions to the Navier-Stokes equations with initial data in critical Besov spaces 2016 Reinhard Farwig
Yoshikazu Giga
Pen-Yuan Hsu
+ Global Leray-Hopf Weak Solutions of the Navier-Stokes Equations with Nonzero Time-dependent Boundary Values 2011 Reinhard Farwig
Hideo Kozono
Hermann Sohr
+ Weak Solutions for the Navier-Stokes Equations for ${B}^{-1(ln)}_{\infty\infty}+{B}_{\dot{X}_r}^{-1+r,\frac{2}{1-r}}+L^2$ Initial Data 2010 Shangbin Cui
+ On the relation between very weak and Leray–Hopf solutions to Navier–Stokes equations 2019 Giovanni P. Galdi
+ A new proof of existence in the 𝐿³-setting of solutions to the Navier–Stokes Cauchy problem 2022 Francesca Crispo
+ On the Relation between Very Weak and Leray-Hopf Solutions to Navier-Stokes Equations 2018 Giovanni P. Galdi

Works That Cite This (26)

Action Title Year Authors
+ Minimal blow-up initial data in critical Fourier-Herz spaces for potential Navier-Stokes singularities 2018 Jingyue Li
Changxing Miao
Xiaoxin Zheng
+ Existence and Weak* Stability for the Navier-Stokes System with Initial Values in Critical Besov Spaces 2017 Tobias Barker
+ Global existence, regularity, and uniqueness of infinite energy solutions to the Navier-Stokes equations 2019 Zachary Bradshaw
Tai‐Peng Tsai
+ Anomalous dissipation, anomalous work, and energy balance for smooth solutions of the Navier-Stokes equations 2019 Alexey Cheskidov
Xiaoyutao Luo
+ A remark on weak-strong uniqueness for suitable weak solutions of the Navier-Stokes equations 2021 Pierre Gilles Lemarié–Rieusset
+ PDF Chat A remark on weak-strong uniqueness for suitable weak solutions of the Navier–Stokes equations 2022 Pierre Gilles Lemarié–Rieusset
+ PDF Chat Localized Smoothing for the Navier–Stokes Equations and Concentration of Critical Norms Near Singularities 2020 Tobias Barker
Christophe Prange
+ PDF Chat Interpolation, extrapolation, Morrey spaces and local energy control for the Navier--Stokes equations. 2019 Pierre Gilles Lemarié–Rieusset
+ PDF Chat Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary 2020 Dallas Albritton
Tobias Barker
+ PDF Chat Global existence, regularity, and uniqueness of infinite energy solutions to the Navier-Stokes equations 2020 Zachary Bradshaw
Tai‐Peng Tsai