Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian

Type: Article

Publication Date: 2017-02-17

Citations: 30

DOI: https://doi.org/10.1142/s0219199717500353

Abstract

In this paper, we study an evolution equation involving the normalized [Formula: see text]-Laplacian and a bounded continuous source term. The normalized [Formula: see text]-Laplacian is in non-divergence form and arises for example from stochastic tug-of-war games with noise. We prove local [Formula: see text] regularity for the spatial gradient of the viscosity solutions. The proof is based on an improvement of flatness and proceeds by iteration.

Locations

  • arXiv (Cornell University) - View - PDF
  • Communications in Contemporary Mathematics - View

Similar Works

Action Title Year Authors
+ Hölder regularity for the gradient of the inhomogeneous parabolic normalized $p$-Laplacian 2016 Amal Attouchi
Mikko Parviainen
+ H\"older regularity for the gradient of the inhomogeneous parabolic normalized $p$-Laplacian 2016 Amal Attouchi
Mikko Parviainen
+ Hölder gradient estimates for parabolic homogeneous p-Laplacian equations 2015 Tianling Jin
Luís Silvestre
+ PDF Chat Hölder gradient estimates for parabolic homogeneous p-Laplacian equations 2016 Tianling Jin
Luís Silvestre
+ Gradient Holder regularity for parabolic normalized p(x,t)-Laplace equation 2020 Yuzhou Fang
Chao Zhang
+ PDF Chat Gradient Hölder regularity for parabolic normalized p(x,t)-Laplace equation 2021 Yuzhou Fang
Chao Zhang
+ $C^{1,\alpha}$ regularity for the normalized $p$-Poisson problem 2016 Amal Attouchi
Mikko Parviainen
Eero Ruosteenoja
+ PDF Chat Modica type gradient estimates for an inhomogeneous variant of the normalized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi></mml:math>-Laplacian evolution 2015 Agnid Banerjee
Nicola Garofalo
+ Borderline gradient continuity for the normalized $p$-parabolic operator 2022 Murat Akman
Agnid Banerjee
Isidro H. Munive
+ PDF Chat Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity 2022 Yuzhou Fang
Chao Zhang
+ $C^{1,α}$ regularity for the normalized $p$-Poisson problem 2016 Amal Attouchi
Mikko Parviainen
Eero Ruosteenoja
+ Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity 2021 Yuzhou Fang
Chao Zhang
+ PDF Chat Second order Sobolev regularity results for the generalized $p$-parabolic equation 2024 Yawen Feng
Mikko Parviainen
Saara Sarsa
+ Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non-divergence form 2022 Tapio Kurkinen
Mikko Parviainen
Jarkko Siltakoski
+ Modica type gradient estimates for an inhomogeneous variant of the normalized p-laplacian evolution 2014 Agnid Banerjee
Nicola Garofalo
+ Modica type gradient estimates for an inhomogeneous variant of the normalized p-laplacian evolution 2014 Agnid Banerjee
Nicola Garofalo
+ PDF Chat Gradient regularity for nonlinear parabolic equations 2013 Tuomo Kuusi
Giuseppe Mingione
+ Non-local gradient dependent operators 2012 Clayton Bjorland
Luis Caffarelli
Alessio Figalli
+ PDF Chat Boundary regularity for a general nonlinear parabolic equation in non-divergence form 2024 Tapio Kurkinen
+ Intrinsic Harnack's inequality for a general nonlinear parabolic equation in non-divergence form 2023 Tapio Kurkinen
Jarkko Siltakoski