Many-body localization in Ising models with random long-range interactions

Type: Article

Publication Date: 2016-12-20

Citations: 25

DOI: https://doi.org/10.1103/physreva.94.063625

Abstract

We theoretically investigate the many-body localization phase transition in a one-dimensional Ising spin chain with random long-range spin-spin interactions, ${V}_{ij}\ensuremath{\propto}{\left|i\ensuremath{-}j\right|}^{\ensuremath{-}\ensuremath{\alpha}}$, where the exponent of the interaction range $\ensuremath{\alpha}$ can be tuned from zero to infinitely large. By using exact diagonalization, we calculate the half-chain entanglement entropy and the energy spectral statistics and use them to characterize the phase transition towards the many-body localization phase at infinite temperature and at sufficiently large disorder strength. We perform finite-size scaling to extract the critical disorder strength and the critical exponent of the divergent localization length. With increasing $\ensuremath{\alpha}$, the critical exponent experiences a sharp increase at about ${\ensuremath{\alpha}}_{c}\ensuremath{\simeq}1.2$ and then gradually decreases to a value found earlier in a disordered short-ranged interacting spin chain. For $\ensuremath{\alpha}<{\ensuremath{\alpha}}_{c}$, we find that the system is mostly localized and the increase in the disorder strength may drive a transition between two many-body localized phases. In contrast, for $\ensuremath{\alpha}>{\ensuremath{\alpha}}_{c}$, the transition is from a thermalized phase to the many-body localization phase. Our predictions could be experimentally tested with an ion-trap quantum emulator with programmable random long-range interactions, or with randomly distributed Rydberg atoms or polar molecules in lattices.

Locations

  • Physical review. A/Physical review, A - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Many-body localization in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mi>Y</mml:mi></mml:mrow></mml:math> spin chains with long-range interactions: An exact-diagonalization study 2019 Sebastian Schiffer
Jia Wang
Xia-Ji Liu
Hui Hu
+ Many-body localization in the infinite-interaction limit and the discontinuous eigenstate phase transition 2020 Chun Chen
Yan Chen
Xiaoqun Wang
+ PDF Chat Effect of long-range hopping and interactions on entanglement dynamics and many-body localization 2017 Rajeev Singh
Roderich Moessner
Dibyendu Roy
+ PDF Chat Many-Body Localization in a Disordered Quantum Ising Chain 2014 Jonas A. Kjäll
Jens H. Bardarson
Frank Pollmann
+ PDF Chat Many-body localization properties of fully frustrated Heisenberg spin-1/2 ladder model with next-nearest-neighbor interaction 2024 Jiameng Hong
Taotao Hu
+ PDF Chat Localization in a random XY model with long-range interactions: Intermediate case between single-particle and many-body problems 2015 Alexander L. Burin
+ PDF Chat Many-body localization in clean chains with long-range interactions 2023 Chen Cheng
+ PDF Chat Many-body localization in the infinite-interaction limit and the discontinuous eigenstate phase transition 2022 Chun Chen
Yan Chen
Xiaoqun Wang
+ PDF Chat Many-body localization phase transition 2010 Arijeet Pal
David A. Huse
+ Many-body Localization in Clean Chains with Long-Range Interactions 2023 Chen Cheng
+ Many-body localization in the Heisenberg<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>X</mml:mi><mml:mi>X</mml:mi><mml:mi>Z</mml:mi></mml:mrow></mml:math>magnet in a random field 2008 Marko Žnidarič
TomaĹž Prosen
P. PrelovĹĄek
+ PDF Chat Many-body localization in infinite chains 2017 Tilman Enss
F. Andraschko
Jesko Sirker
+ PDF Chat Disorder free many-body localization transition in two quasiperiodically coupled Heisenberg spin chains 2024 K. G. S. H. Gunawardana
Bruno Uchoa
+ PDF Chat Comment on “Many-body localization in Ising models with random long-range interactions” 2017 Andrii Maksymov
N. Nissa Rahman
Eliot Kapit
Alexander L. Burin
+ PDF Chat Many-body localization and mobility edge in a disordered spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>Heisenberg ladder 2015 Elliott Baygan
S. P. Lim
D. N. Sheng
+ PDF Chat Many-body localization and quantum ergodicity in disordered long-range Ising models 2015 Philipp Hauke
Markus Heyl
+ Frustration induced quasi-many-body localization without disorder 2018 Sayan Choudhury
Eun-Ah Kim
Qi Zhou
+ PDF Chat Many-body localization transition in a frustrated XY chain 2022 M. S. Bahovadinov
Denis V. Kurlov
S. I. Matveenko
B. L. Altshuler
G. V. Shlyapnikov
+ Finite-size scaling regarding interaction in the many-body localization transition 2018 Kazue Kudo
Tetsuo Deguchi
+ Directly Revealing Entanglement Dynamics through Quantum Correlation Transfer Functions with Resultant Demonstration of the Mechanism of Many-Body Localization 2022 Peyman Azodi
Herschel Rabitz

Works That Cite This (21)

Action Title Year Authors
+ PDF Chat Many-body localization in presence of cavity mediated long-range interactions 2019 Piotr Sierant
Krzysztof Biedroń
Giovanna Morigi
Jakub Zakrzewski
+ PDF Chat Tunable boson-assisted finite-range interaction and engineering Majorana corner modes in optical lattices 2023 Yu‐Biao Wu
Zhen Zheng
Xianggang Qiu
Lin Zhuang
Guang‐Can Guo
Xu‐Bo Zou
Wu‐Ming Liu
+ PDF Chat Stochastic parameter optimization analysis of dynamical quantum critical phenomena in the long-range transverse-field Ising chain 2024 Sora Shiratani
Synge Todo
+ Eigenstate Thermalization and Spontaneous Symmetry Breaking in the One-Dimensional Transverse-Field Ising Model with Power-Law Interactions 2016 Keith R. Fratus
Mark Srednicki
+ PDF Chat Comment on “Many-body localization in Ising models with random long-range interactions” 2017 Andrii Maksymov
N. Nissa Rahman
Eliot Kapit
Alexander L. Burin
+ PDF Chat Floquet-induced localization in long-range many-body systems 2023 Rozhin Yousefjani
Sougato Bose
Abolfazl Bayat
+ PDF Chat Universal Algebraic Growth of Entanglement Entropy in Many-Body Localized Systems with Power-Law Interactions 2020 Xiaolong Deng
Guido Masella
Guido Pupillo
L. Santos
+ PDF Chat Many-body localization in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mi>Y</mml:mi></mml:mrow></mml:math> spin chains with long-range interactions: An exact-diagonalization study 2019 Sebastian Schiffer
Jia Wang
Xia-Ji Liu
Hui Hu
+ PDF Chat Programmable quantum simulations of spin systems with trapped ions 2021 C. Monroe
Wesley C. Campbell
L.-M. Duan
Zhe-Xuan Gong
Alexey V. Gorshkov
Paul Hess
Rajibul Islam
Kihwan Kim
Norbert Linke
Guido Pagano
+ PDF Chat Polynomially Filtered Exact Diagonalization Approach to Many-Body Localization 2020 Piotr Sierant
Maciej Lewenstein
Jakub Zakrzewski