Number of Eigenvalues of Non-self-adjoint Schr\"{o}dinger Operators with Dilation Analytic Complex Potentials

Type: Preprint

Publication Date: 2016-09-21

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Number of Eigenvalues of Non-self-adjoint Schrödinger Operators with Dilation Analytic Complex Potentials 2016 Norihiro Someyama
+ PDF Chat Number of Eigenvalues of Non-Self-Adjoint Schrödinger Operators with Dilation Analytic Complex Potentials 2019 Norihiro Someyama
+ Another Application of Dilation Analytic Method for Complex Lieb--Thirring Type Estimates 2020 Norihiro Someyama
+ Another Application of Dilation Analytic Method for Complex Lieb--Thirring Type Estimates 2020 Norihiro Someyama
+ Lieb--Thirring Type Estimates on Isolated and Resonance Eigenvalues on Complex Subplane 2020 Norihiro Someyama
+ Lieb–Thirring Type Inequalities for Schrödinger Operators with a Complex-Valued Potential 2012 Michael Demuth
Marcel Hansmann
Guy Katriel
+ On Lieb--Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schr{\" o}dinger operators 2020 Sabine Bögli
František Štampach
+ On Lieb--Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schr{\" o}dinger operators 2020 Sabine Bögli
František Štampach
+ Estimating complex eigenvalues of non-self-adjoint Schr\"odinger operators via complex dilations 2010 Jeffrey Schenker
+ An upper bound for the number of eigenvalues of non-selfadjoint Schrödinger operator 2013 С. А. Степин
+ PDF Chat Non-harmonic analysis of the wave equation for Schr\"{o}dinger operators with complex potential 2024 Aparajita Dasgupta
Lalit Mohan
Shyam Swarup Mondal
+ Relativistic Hamiltonians with dilation analytic potentials diverging at infinity 2011 Hiroshi Ito
Osanobu Yamada
+ Number of eigenvalues for a class of non-selfadjoint Schrödinger operators 2009 Xue Ping Wang
+ On non-selfadjoint perturbations of infinite band Schrödinger operators and Kato method 2015 Leonid Golinskiĭ
S. Kupin
+ Notes on Lieb-Thirring type inequality for a complex perturbation of fractional Schrödinger operator 2014 Clément Dubuisson
+ Multidimensional Hardy inequalities and the absence of positive eigenvalues for the Schr�dinger operator with a complex potential 1986 A. F. Vakulenko
+ Estimating complex eigenvalues of non-self-adjoint Schrödinger operators via complex dilations 2010 Jeffrey Schenker
+ PDF Chat Eigenvalue Estimates for Non-Selfadjoint Dirac Operators on the Real Line 2013 Jean‐Claude Cuenin
Ари Лаптев
Christiane Tretter
+ Eigenvalues and resonances of Dirac operators with dilation analytic potentials diverging at infinity 2020 Hiroshi Ito
+ Estimating complex eigenvalues of non-self-adjoint Schr\ 2010 Jeffrey Schenker

Works That Cite This (0)

Action Title Year Authors