On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>

Type: Article

Publication Date: 2017-07-12

Citations: 18

DOI: https://doi.org/10.1016/j.jde.2017.04.020

Locations

  • Journal of Differential Equations - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat On smoothing estimates in modulation spaces and the nonlinear Schrödinger equation with slowly decaying initial data 2021 Robert Schippa
+ On smoothing estimates in modulation spaces and the NLS with slowly decaying initial data 2021 Robert Schippa
+ Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces 2018 Tadahiro Oh
Yuzhao Wang
+ On the 1D Cubic Nonlinear Schrodinger Equation in an Almost Critical Space 2014 Shaoming Guo
+ Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension 2014 Mihaela Ifrim
Daniel Tataru
+ On the 1D Cubic NLS in an Almost Critical Space 2014 Shaoming Guo
+ Global bounds for the cubic nonlinear Schr\"odinger equation (NLS) in one space dimension 2014 Mihaela Ifrim
Daniel Tataru
+ PDF Chat Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension 2015 Mihaela Ifrim
Daniel Tataru
+ A first-order Fourier integrator for the nonlinear Schrödinger equation on 𝕋 without loss of regularity 2021 Yifei Wu
Fangyan Yao
+ PDF Chat Energy and local energy bounds for the 1-d cubic NLS equation in \( H^{- \frac{1}{4}} \) 2012 Herbert Koch
Daniel Tataru
+ PDF Chat Nonlinear Schrödinger equation, differentiation by parts and modulation spaces 2019 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+ Local well-posedness of the nonlinear Schrödinger equations on the sphere for data in modulation spaces 2015 Hideo Takaoka
+ PDF Chat Local well-posedness of the nonlinear Schrödinger equations on the sphere for data in modulation spaces 2015 Hideo Takaoka
+ On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2020 Vanessa Andrade de Barros
Simão Correia
Filipe Oliveira
+ Solutions to nonlinear higher order Schrödinger equations with small initial data on modulation spaces 2016 Tomoya Kato
+ PDF Chat On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2022 Vanessa Barros
Simão Correia
Filipe Oliveira
+ Global wellposedness of NLS in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo linebreak="goodbreak" linebreakstyle="after">+</mml:mo><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msup><mml:mo stretchy… 2022 Friedrich Klaus
Peer Christian Kunstmann
+ Global solutions for 1D cubic dispersive equations, Part III: the quasilinear Schrödinger flow 2023 Mihaela Ifrim
Daniel Tataru
+ Global well-posedness for the higher order non-linear Schrödinger equation in modulation spaces 2024 Xavier Carvajal
Pedro Gamboa
Rui Santos
+ PDF Chat Global Solutions for 3D Quadratic Schrodinger Equations 2008 Pierre Germain
Nader Masmoudi
Jalal Shatah