Computing Rational Gauss-Chebyshev Quadrature Formulas with Complex Poles

Type: Article

Publication Date: 2009-05-25

Citations: 5

DOI: https://doi.org/10.4203/ccp.84.30

Abstract

We provide a fast algorithm to compute arbitrarily many nodes and weights for rational Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary complex poles outside [-1, 1].This algorithm is based on the derivation of explicit expressions for the Chebyshev (para-) orthogonal rational functions.

Locations

  • Civil-comp proceedings - View
  • Lirias (KU Leuven) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Computing rational Gauss–Chebyshev quadrature formulas with complex poles: The algorithm 2009 Karl Deckers
Joris Van Deun
Adhemar Bultheel
+ PDF Chat Rational Gauss-Chebyshev quadrature formulas for complex poles outside $[-1,1]$ 2007 Karl Deckers
Joris Van Deun
Adhemar Bultheel
+ On computing rational Gauss-Chebyshev quadrature formulas 2005 Joris Van Deun
Adhemar Bultheel
Pablo GonzĂĄlez Vera
+ A rational variant of Fejér's quadrature rule with arbitrary complex poles 2009 Karl Deckers
+ Rational Gauss quadrature 2013 Adhemar Bultheel
+ Orthogonal rational functions and rational Gauss-type quadrature rules 2011 Karl Deckers
+ Rational Gauss-type quadrature formulas with a prescribed node anywhere on the real line 2010 Karl Deckers
Adhemar Bultheel
Joris Van Deun
+ PDF Chat Rational SzegƑ quadratures associated with Chebyshev weight functions 2008 Adhemar Bultheel
Ruymán Cruz‐Barroso
Karl Deckers
Pablo GonzĂĄlez-Vera
+ Rational quadrature formulae on the unit circle with arbitrary poles 2007 B. de la Calle Ysern
Pablo GonzĂĄlez-Vera
+ Chebyshev approximation by rationals with constrained denominators 1983 Charles B. Dunham
+ Quadrature formulas for Fourier-Chebyshev coefficients 2002 Shijun Yang
+ Rational Gauss Quadrature 2014 Miroslav S. Pranić
Lothar Reichel
+ DIAGONAL RATIONAL CHEBYSHEV APPROXIMANTS AND HOLOMORPHIC CONTINUATION OF FUNCTIONS 1990 Ralitza Kovacheva
+ DIAGONAL RATIONAL CHEBYSHEV APPROXIMANTS AND HOLOMORPHIC CONTINUATION OF FUNCTIONS 1990 R K Kova Ceva
+ The computation of rational SzegƑ quadrature formulas 2008 Adhemar Bultheel
+ Chebyshev quadrature 2013 Jaap Korevaar
+ Quadrature Methods for the Determination of Zeros of Transcendental Functions - A Review 1987 N. I. Ioakimidis
+ The construction of Chebyshev approximations in the complex plane 1978 G. H. Elliott
+ An Algorithm for Chebyshev Approximation by Rationals with Constrained Denominators 1996 Martin Gugat
+ On the zeros of complex polynomials related to particular Gauss-Kronrod quadrature formulas 1992 F. CaliĂČ
Elena Marchetti