Global well-posedness of the derivative nonlinear Schr\"odinger equation with periodic boundary condition in $H^{\frac12}$

Type: Preprint

Publication Date: 2016-08-24

Citations: 1

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in $H^{\frac12}$ 2016 Răzvan Moşincat
+ Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:msup></mml:math> 2017 Răzvan Moşincat
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ PDF Chat Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2020 Hajer Bahouri
Galina Perelman
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ A remark on global well-posedness of the derivative nonlinear Schr\"odinger equation on the circle 2015 Răzvan Moşincat
Tadahiro Oh
+ A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle 2015 Răzvan Moşincat
Tadahiro Oh
+ Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yifei Wu
+ Global Well-Posedness for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition 2024 Hajer Bahouri
Galina Perelman
+ PDF Chat Global well-posedness for the derivative nonlinear Schr\"odinger equation 2022 Hajer Bahouri
Galina Perelman
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2022 Hajer Bahouri
Galina Perelman
+ PDF Chat Global well-posedness for the generalized derivative nonlinear Schr\"odinger equation 2021 Ben Pineau
Mitchell A. Taylor
+ Global well-posedness for the generalized derivative nonlinear Schrödinger equation 2021 Ben Pineau
Mitchell A. Taylor
+ PDF Chat Low Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data 2008 Axel Grünrock
Sebastian Herr
+ Global Well-Posedness on a generalized derivative nonlinear Schr\"odinger equation 2016 Noriyoshi Fukaya
Masayuki Hayashi
Takahisa Inui
+ PDF Chat Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yi Wu
+ PDF Chat Local Wellposedness of dispersive equations with quasi-periodic initial data 2024 Hagen Papenburg
+ PDF Chat On the Cauchy problem for the derivative nonlinear Schrodinger equation with periodic boundary condition 2006 Sebastian Herr