Systems-level approach to uncovering diffusive states and their transitions from single-particle trajectories

Type: Article

Publication Date: 2016-11-28

Citations: 36

DOI: https://doi.org/10.1103/physreve.94.052412

Abstract

The stochastic motions of a diffusing particle contain information concerning the particle's interactions with binding partners and with its local environment. However, accurate determination of the underlying diffusive properties, beyond normal diffusion, has remained challenging when analyzing particle trajectories on an individual basis. Here, we introduce the maximum likelihood estimator (MLE) for confined diffusion and fractional Brownian motion. We demonstrate that this MLE yields improved estimation over traditional mean square displacement analyses. We also introduce a model selection scheme (that we call mleBIC) that classifies individual trajectories to a given diffusion mode. We demonstrate the statistical limitations of classification via mleBIC using simulated data. To overcome these limitations, we introduce a new version of perturbation expectation-maximization (pEMv2), which simultaneously analyzes a collection of particle trajectories to uncover the system of interactions which give rise to unique normal and/or non-normal diffusive states within the population. We test and evaluate the performance of pEMv2 on various sets of simulated particle trajectories, which transition among several modes of normal and non-normal diffusion, highlighting the key considerations for employing this analysis methodology.

Locations

  • Physical review. E - View
  • arXiv (Cornell University) - View - PDF
  • Cold Spring Harbor Laboratory Institutional Repository (Cold Spring Harbor Laboratory) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Fast and precise inference on diffusivity in interacting particle systems 2023 Gustav Lindwall
Philip Gerlee
+ Maximum likelihood estimates of diffusion coefficients from single-particle tracking experiments 2020 Jakob T贸mas Bullerjahn
Gerhard Hummer
+ Maximum likelihood estimates of diffusion coefficients from single-particle tracking experiments 2020 Jakob T贸mas Bullerjahn
Gerhard Hummer
+ Accurate Estimation of Diffusion Coefficients and their Uncertainties from Computer Simulation 2023 Andrew R. McCluskey
Samuel W. Coles
Benjamin J. Morgan
+ PDF Chat Optimal estimates of the diffusion coefficient of a single Brownian trajectory 2012 Denis Boyer
David S. Dean
Carlos Mej铆a-Monasterio
Gleb Oshanin
+ Uncovering diffusive states of the yeast proton pump, Pma1, and how labeling method can change diffusive behavior 2022 Mary Lou P. Bailey
Susan E. Pratt
Yongdeng Zhang
Michael Hinrichsen
Joerg Bewersdorf
Lynne Regan
S. G. J. Mochrie
+ PDF Chat Guidelines for the Fitting of Anomalous Diffusion Mean Square Displacement Graphs from Single Particle Tracking Experiments 2015 Eldad Kepten
Aleksander Weron
Grzegorz Sikora
Krzysztof Burnecki
Yuval Garini
+ PDF Chat Single-Particle Diffusion Characterization by Deep Learning 2019 Naor Granik
Lucien E. Weiss
Elias Nehme
Maayan Levin
Michael Chein
Eran Perlson
Yael Roichman
Yoav Shechtman
+ Accurate Estimation of Diffusion Coefficients and their Uncertainties from Computer Simulation 2024 Andrew R. McCluskey
Samuel W. Coles
Benjamin J. Morgan
+ PDF Chat Single particle diffusion characterization by deep learning 2019 Naor Granik
Elias Nehme
Lucien E. Weiss
Maayan Levin
Michael Chein
Eran Perlson
Yael Roichman
Yoav Shechtman
+ PDF Chat A jump distance based parameter inference scheme for particulate trajectories in biological settings 2017 Rebecca Menssen
Madhav Mani
+ PDF Chat Inferring diffusion in single live cells at the single-molecule level 2012 Alex Robson
Kevin Burrage
Mark C. Leake
+ Maximum likelihood estimations of force and mobility from short single Brownian trajectories 2016 Rapha毛l Sarfati
Jerzy B艂awzdziewicz
Eric R. Dufresne
+ Maximum likelihood estimations of force and mobility from short single Brownian trajectories 2016 Rapha毛l Sarfati
Jerzy B艂awzdziewicz
Eric R. Dufresne
+ PDF Chat Maximum likelihood estimates of diffusion coefficients from single-particle tracking experiments 2021 Jakob T贸mas Bullerjahn
Gerhard Hummer
+ PDF Chat Correcting for bias of molecular confinement parameters induced by small-time-series sample sizes in single-molecule trajectories containing measurement noise 2013 Christopher P. Calderon
+ PDF Chat Detection of transition times from single-particle-tracking trajectories 2017 Takuma Akimoto
Eiji Yamamoto
+ PDF Chat Estimating Position-Dependent and Anisotropic Diffusivity Tensors from Molecular Dynamics Trajectories: Existing Methods and Future Outlook 2024 Tiago S. Domingues
Ronald R. Coifman
Amir Haji-Akbari
+ PDF Chat Estimating position-dependent and anisotropic diffusivity tensors from molecular dynamics trajectories: Existing methods and future outlook 2024 Tiago Dias Domingues
Ronald R. Coifman
Amir Haji-Akbari
+ Hidden Markov modeling of single particle diffusion with stochastic tethering 2023 Amit Federbush
Amit Moscovich
Yohai Bar鈥怱inai

Works That Cite This (11)

Action Title Year Authors
+ PDF Chat Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis 2017 Grzegorz Sikora
Agnieszka Wy艂oma艅ska
Janusz Gajda
Laura Sol茅
Elizabeth J. Akin
Michael M. Tamkun
Diego Krapf
+ Understanding Brownian yet non-Gaussian diffusion via long-range molecular interactions 2022 Francisco E. Alban-Chac贸n
Erick Lamilla
Manuel S. Alvarez鈥怉lvarado
+ Diffusive Search for Diffusing Targets with Fluctuating Diffusivity and Gating 2019 Sean D. Lawley
Christopher E. Miles
+ PDF Chat Learning physical properties of anomalous random walks using graph neural networks 2021 Hippolyte Verdier
Maxime Duval
Fran莽ois Laurent
Alhassan Cass茅
Christian L. Vestergaard
Jean鈥怋aptiste Masson
+ PDF Chat Variational inference of fractional Brownian motion with linear computational complexity 2022 Hippolyte Verdier
Fran莽ois Laurent
Alhassan Cass茅
Christian L. Vestergaard
Jean鈥怋aptiste Masson
+ PDF Chat Covariance distributions in single particle tracking 2021 Mary Lou P. Bailey
Hao Yan
Ivan V. Surovtsev
Jessica F. Williams
Megan C. King
S. G. J. Mochrie
+ PDF Chat A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application 2022 Francisco E. Alban-Chac贸n
Erick Lamilla
Manuel S. Alvarez鈥怉lvarado
+ PDF Chat Detection of transition times from single-particle-tracking trajectories 2017 Takuma Akimoto
Eiji Yamamoto
+ PDF Chat Recurrence statistics for anomalous diffusion regime change detection 2018 Grzegorz Sikora
Agnieszka Wy艂oma艅ska
Diego Krapf
+ Trajectory Analysis in Single-Particle Tracking: From Mean Squared Displacement to Machine Learning Approaches 2024 Chiara Schirripa Spagnolo
Stefano Luin