Proof That <i>x</i><sup>2</sup> – 3<i>y</i><sup>2</sup> = –1 Has No Integral Solutions

Type: Other

Publication Date: 1963-01-01

Citations: 0

DOI: https://doi.org/10.5948/upo9780883859261.008

Similar Works

Action Title Year Authors
+ A Geometric Interpretation of the Solutions of <i>y</i>″ = <i>c</i><sup>2</sup><i>y</i> 1966 Douglas Lind
+ On the Rational Solutions of <i>x<sup>y</sup></i> = <i>y<sup>x</sup></i> 1990 Marta Sved
+ Integral Solutions of <i>ax</i><sup>3</sup>+<i>by</i><sup>3</sup> = <i>ax</i><sup>3</sup>+<i>bt</i><sup>3</sup> 1931 P. A. Caris
+ 80.34 On solutions of <i>m</i><sup>2</sup> + <i>n</i><sup>2</sup> = 1 + <i>l</i><sup>2</sup> 1996 Christopher Bradley
+ PDF Chat THE EQUATIONS 3<i>x</i><sup>2</sup>−2 = <i>y</i><sup>2</sup> AND 8<i>x</i><sup>2</sup>−7 = <i>z</i><sup>2</sup> 1969 A. Baker
H. Davenport
+ The Solutions of <i>x</i><sup><i>y</i></sup> = <i>y</i><sup><i>x</i></sup>, <i>x</i>&gt;0, <i>y</i>&gt;0, <i>x</i>≠<i>y</i>, and their Graphical Representation 1931 H. L. Slobin
+ 1841. <i>The number of solutions of x<sup>2</sup> + y<sup>2</sup> = z</i> 1945 A. W. Gent
+ Minimum Solutions to <i>x</i> <sup>2</sup> − <i>Dy</i> <sup>2</sup> = ± 1 1975 Gregory Wulczyn
+ 83.27 Integer solutions of <i>a</i><sup>-2</sup> + <i>b</i><sup>-2</sup> = <i>d</i><sup>-2</sup> 1999 Roger Voles
+ Integral Solutions to the Equation <i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> + <i>z</i><sup>2</sup> = <i>u</i><sup>2</sup>: A Geometrical Approach 1984 Ayoub B. Ayoub
+ 84.42 Proof of Voles’ conjecture concerning solutions of <i><sup>n</sup>x = <sup>n</sup>y</i> 2000 Darrell Desbrow
+ 3257. Solution of <i>x<sup>p-1</sup>-py<sup>q</sup></i>= -1, p prime, <i>q</i> a positive integer 1970 R. S. Luthar
+ 2484. Integral solutions of the equation l<sup>2</sup> + m<sup>2</sup> + n<sup>2</sup> =p<sup>2</sup> 1955 C.V. Gregg
+ Solvability of an integral equation in <i>BC</i>(ℝ<sub>+</sub>) 2006 Caballero
B. López
Kishin Sadarangani
+ <i>C</i><sup>1</sup>-Solutions of <i>x</i> = <i>f</i>(<i>x</i>’) Are Convex or Concave 1998 Gerd Herzog
+ 88.01 Solutions of <i>x</i><sup>3</sup> + <i>y</i><sup>3</sup> = <i>z</i><sup>3</sup> 2004 Roy Barbara
+ 84.52 Iterative solutions of <i>F(x)</i> = 0 2000 Robert Murphy
+ <i>a<sup>b</sup></i> = <i>b<sup>a</sup></i>: the positive integer solution 1992 F. Gerrish
+ Some Properties of the Equation <i>x</i> <sup>2</sup> = 5 <i>y</i> <sup>2</sup> − 4 2016 Serge Perrine
+ On the Equation <i>a</i>(<i>a</i> + <i>d</i>)(<i>a</i> + 2<i>d</i>)(<i>a</i> + 3<i>d</i>) = <i>x</i><sup>2</sup> 2000 Tamás Erdélyi

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors