Hilbert transform along measurable vector fields constant on Lipschitz curves :<i>L</i><sup>2</sup>boundedness

Type: Article

Publication Date: 2015-07-28

Citations: 18

DOI: https://doi.org/10.2140/apde.2015.8.1263

Abstract

We prove the L 2 boundedness of the directional Hilbert transform in the plane relative to measurable vector fields which are constant on suitable Lipschitz curves.One novelty of our proof lies in the definition of the adapted Littlewood-Paley projection (see Definition 3.3).The other novelty is that we will use Jones' beta numbers to control certain commutator in the critical Lipschitz regularity (see Lemma 5.5).

Locations

  • Analysis & PDE - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Hilbert transform along measurable vector fields constant on Lipschitz curves: $L^p$ boundedness 2014 Shaoming Guo
+ PDF Chat Hilbert transform along measurable vector fields constant on Lipschitz curves: $L^p$ boundedness 2015 Shaoming Guo
+ Hilbert transform along measurable vector fields constant on Lipschitz curves: $L^2$ boundedness 2014 Shaoming Guo
+ PDF Chat Single annulus estimates for the variation-norm Hilbert transforms along Lipschitz vector fields 2016 Shaoming Guo
+ PDF Chat <i>L</i><sup><i>p</i></sup>estimates for the Hilbert transforms along a one-variable vector field 2013 Michael Bateman
Christoph Thiele
+ Single annulus estimates for the variation-norm Hilbert transforms along Lipschitz vector fields 2016 Shaoming Guo
+ Hilbert transforms along variable planar curves: Lipschitz regularity 2021 Naijia Liu
Haixia Yu
+ Hilbert transforms along Lipschitz direction fields: A lacunary model 2016 Shaoming Guo
Christoph Thiele
+ The Hilbert transform on Lipschitz curves 1982 Ronald R. Coifman
Alan McIntosh
Yves Meyer
+ PDF Chat Hilbert transforms along variable planar curves: Lipschitz regularity 2021 Naijia Liu
Haixia Yu
+ Smoothness via directional smoothness and Marchaud's theorem in Banach spaces 2014 Michal Johanis
Luděk Zajı́ček
+ Bergman Type Projection on Lipschitz Spaces 2024 Karen Avetisyan
+ Sharp L2 Boundedness of Transform the Oscillatory Hyper-Hilbert along Curves 2010 Jie Jie
Cheng
Chen
Shah
Fan
■ Xiang
Rong
Zhu
+ PDF Chat HILBERT TRANSFORMS ALONG LIPSCHITZ DIRECTION FIELDS: A LACUNARY MODEL 2017 Shaoming Guo
Christoph Thiele
+ On lipschitz continuity of quasiconformalmappings in space 2009 Vladimir Gutlyanskiǐ
Anatoly Golberg
+ PDF Chat Lipschitz extension constants equal projection constants 2006 Marc A. Rieffel
+ PDF Chat Fragment-wise differentiable structures 2024 David Bate
Sylvester Eriksson‐Bique
Elefterios Soultanis
+ Lipschitz extension constants equal projection constants 2005 Marc A. Rieffel
+ Sharp L 2 boundedness of the oscillatory hyper-Hilbert transform along curves 2010 Jie Cheng Chen
Da Shan Fan
Xiang Zhu
+ PDF Chat $$L^2$$ boundedness of Hilbert transforms along variable flat curves 2021 Junfeng Li
Haixia Yu

Works That Cite This (18)

Action Title Year Authors
+ PDF Chat A maximal function for families of Hilbert transforms along homogeneous curves 2019 Shaoming Guo
Joris Roos
Andreas Seeger
Po‐Lam Yung
+ PDF Chat Square functions for bi-Lipschitz maps and directional operators 2018 Francesco Di Plinio
Shaoming Guo
Christoph Thiele
Pavel Zorin‐Kranich
+ A Geometric Proof of Bourgain’s $$L^2$$ L 2 Estimate of Maximal Operators Along Analytic Vector Fields 2016 Shaoming Guo
+ PDF Chat Hilbert transforms along variable planar curves: Lipschitz regularity 2021 Naijia Liu
Haixia Yu
+ L bounds of maximal operators along variable planar curves in the Lipschitz regularity 2020 Naijia Liu
Liang Song
Haixia Yu
+ PDF Chat On the Maximal Directional Hilbert Transform in Three Dimensions 2018 Francesco Di Plinio
Ioannis Parissis
+ A unified approach to three themes in harmonic analysis ($1^{st}$ part) 2019 Victor Lie
+ PDF Chat A sharp estimate for the Hilbert transform along finite order lacunary sets of directions 2018 Francesco Di Plinio
Ioannis Parissis
+ PDF Chat Singular integrals along lacunary directions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2021 Natalia Accomazzo
Francesco Di Plinio
Ioannis Parissis
+ $L^p(\mathbb{R}^2)$-boundedness of Hilbert Transforms and Maximal Functions along Plane Curves with Two-variable Coefficients 2020 Naijia Liu
Liang Song
Haixia Yu