Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Forward-Mode Automatic Differentiation in Julia
Jarrett Revels
,
Miles Lubin
,
Theodore Papamarkou
Type:
Preprint
Publication Date:
2016-07-26
Citations:
95
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Forward-Mode Automatic Differentiation in Julia
2016
Jarrett Revels
Miles Lubin
Theodore Papamarkou
+
Vector Forward Mode Automatic Differentiation on SIMD/SIMT architectures
2020
Jan Hückelheim
Michel Schanen
Sri Hari Krishna Narayanan
Paul Hovland
+
Bringing PDEs to JAX with forward and reverse modes automatic differentiation
2023
Ivan Yashchuk
+
AbstractDifferentiation.jl: Backend-Agnostic Differentiable Programming in Julia
2021
Frank Schäfer
Mohamed Tarek
Lyndon White
Christopher Rackauckas
+
AbstractDifferentiation.jl: Backend-Agnostic Differentiable Programming in Julia
2021
Frank Schäfer
Mohamed Tarek
Lyndon White
Christopher Rackauckas
+
The Art of Differentiating Computer Programs
2011
Uwe Naumann
+
PDF
Chat
Sparser, Better, Faster, Stronger: Efficient Automatic Differentiation for Sparse Jacobians and Hessians
2025
Adrian Hill
Guillaume Dalle
+
ACORNS: An easy-to-use code generator for gradients and Hessians
2022
Deshana Desai
Etai Shuchatowitz
Zhongshi Jiang
Teseo Schneider
Daniele Panozzo
+
PDF
Chat
JAX-based differentiable fluid dynamics on GPU and end-to-end optimization
2024
Wenkang Wang
Xuanwei Zhang
Deniz A. Bezgin
Aaron B. Buhendwa
Xu Chu
Bernhard Weigand
+
None
2008
+
PDF
Chat
Source-to-Source Automatic Differentiation of OpenMP Parallel Loops
2022
Jan Hückelheim
Laurent Hascoët
+
PDF
Chat
GPU Accelerated Automatic Differentiation With Clad
2022
Ioana Ifrim
Vassil Vassilev
D. J. Lange
+
GPU Accelerated Automatic Differentiation With Clad
2022
Ioana Ifrim
Vassil Vassilev
D. J. Lange
+
User Guide for MAD - A Matlab Automatic Differentiation Package, TOMLAB/MAD,Version 1.4 The Forward Mode.
2007
Shaun A. Forth
Marcus M. Edvall
+
Source-to-Source Automatic Differentiation of OpenMP Parallel Loops
2021
Jan Hückelheim
Laurent Hascoët
+
PDF
Chat
GPU Accelerated Automatic Differentiation With Clad
2023
Ioana Ifrim
Vassil Vassilev
D. J. Lange
+
Taylor-Mode Automatic Differentiation for Higher-Order Derivatives in JAX
2019
Jesse Bettencourt
Matthew Johnson
David Duvenaud
+
Efficient and Modular Implicit Differentiation
2021
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean‐Philippe Vert
+
FastDer++, efficient automatic differentiation for non-linear PDE solvers
2003
E. Tijskens
Dirk Roose
Herman Ramón
Josse De Baerdemaeker
+
PDF
Chat
NonlinearSolve.jl: High-Performance and Robust Solvers for Systems of Nonlinear Equations in Julia
2024
Avik Pal
Flemming Holtorf
Axel Larsson
Torkel E. Loman
Utkarsh Azad
Frank Schaefer
Qingyu Qu
Alan Edelman
Christopher Rackauckas
Works That Cite This (71)
Action
Title
Year
Authors
+
Automatic differentiation in ML: Where we are and where we should be going.
2018
Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
+
PDF
Chat
A Comparison of Automatic Differentiation and Continuous Sensitivity Analysis for Derivatives of Differential Equation Solutions
2021
Yingbo Ma
Vaibhav Dixit
Michael Innes
Xing‐Jian Guo
Christopher Rackauckas
+
A Differentiable Augmented Lagrangian Method for Bilevel Nonlinear Optimization
2019
Benoit Landry
Zachary Manchester
Marco Pavone
+
Fashionable Modelling with Flux
2018
Michael Innes
Elliot Saba
Keno Fischer
Dhairya Gandhi
Marco Concetto Rudilosso
Neethu Mariya Joy
Tejan Karmali
Avik Pal
Viral B. Shah
+
Cataloging the Visible Universe through Bayesian Inference at Petascale
2018
Jeffrey Regier
Kiran Pamnany
Keno Fischer
Andreas Noack
Maximilian Lam
Jarrett Revels
Steve Howard
Ryan Giordano
David J. Schlegel
Jon McAuliffe
+
Neural Differential Equations for Inverse Modeling in Model Combustors
2021
Xingyu Su
Weiqi Ji
Long Zhang
Wantong Wu
Zhuyin Ren
Sili Deng
+
AbstractDifferentiation.jl: Backend-Agnostic Differentiable Programming in Julia
2021
Frank Schäfer
Mohamed Tarek
Lyndon White
Christopher Rackauckas
+
DiffEqFlux.jl - A Julia Library for Neural Differential Equations
2019
Christopher Rackauckas
Mike Innes
Yingbo Ma
Jesse Bettencourt
Lyndon White
Vaibhav Dixit
+
PDF
Chat
Cataloging the Visible Universe Through Bayesian Inference at Petascale
2018
Jeffrey Regier
Jon McAuliffe
R. C. Thomas
Prabhat
Kiran Pamnany
Keno Fischer
Andreas Noack
Maximilian Lam
Jarrett Revels
Steve Howard
+
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
2020
Levi D. McClenny
Ulisses Braga-Neto
Works Cited by This (0)
Action
Title
Year
Authors