Forward-Mode Automatic Differentiation in Julia

Type: Preprint

Publication Date: 2016-07-26

Citations: 95

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Forward-Mode Automatic Differentiation in Julia 2016 Jarrett Revels
Miles Lubin
Theodore Papamarkou
+ Vector Forward Mode Automatic Differentiation on SIMD/SIMT architectures 2020 Jan Hückelheim
Michel Schanen
Sri Hari Krishna Narayanan
Paul Hovland
+ Bringing PDEs to JAX with forward and reverse modes automatic differentiation 2023 Ivan Yashchuk
+ AbstractDifferentiation.jl: Backend-Agnostic Differentiable Programming in Julia 2021 Frank Schäfer
Mohamed Tarek
Lyndon White
Christopher Rackauckas
+ AbstractDifferentiation.jl: Backend-Agnostic Differentiable Programming in Julia 2021 Frank Schäfer
Mohamed Tarek
Lyndon White
Christopher Rackauckas
+ The Art of Differentiating Computer Programs 2011 Uwe Naumann
+ PDF Chat Sparser, Better, Faster, Stronger: Efficient Automatic Differentiation for Sparse Jacobians and Hessians 2025 Adrian Hill
Guillaume Dalle
+ ACORNS: An easy-to-use code generator for gradients and Hessians 2022 Deshana Desai
Etai Shuchatowitz
Zhongshi Jiang
Teseo Schneider
Daniele Panozzo
+ PDF Chat JAX-based differentiable fluid dynamics on GPU and end-to-end optimization 2024 Wenkang Wang
Xuanwei Zhang
Deniz A. Bezgin
Aaron B. Buhendwa
Xu Chu
Bernhard Weigand
+ None 2008
+ PDF Chat Source-to-Source Automatic Differentiation of OpenMP Parallel Loops 2022 Jan Hückelheim
Laurent Hascoët
+ PDF Chat GPU Accelerated Automatic Differentiation With Clad 2022 Ioana Ifrim
Vassil Vassilev
D. J. Lange
+ GPU Accelerated Automatic Differentiation With Clad 2022 Ioana Ifrim
Vassil Vassilev
D. J. Lange
+ User Guide for MAD - A Matlab Automatic Differentiation Package, TOMLAB/MAD,Version 1.4 The Forward Mode. 2007 Shaun A. Forth
Marcus M. Edvall
+ Source-to-Source Automatic Differentiation of OpenMP Parallel Loops 2021 Jan Hückelheim
Laurent Hascoët
+ PDF Chat GPU Accelerated Automatic Differentiation With Clad 2023 Ioana Ifrim
Vassil Vassilev
D. J. Lange
+ Taylor-Mode Automatic Differentiation for Higher-Order Derivatives in JAX 2019 Jesse Bettencourt
Matthew Johnson
David Duvenaud
+ Efficient and Modular Implicit Differentiation 2021 Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean‐Philippe Vert
+ FastDer++, efficient automatic differentiation for non-linear PDE solvers 2003 E. Tijskens
Dirk Roose
Herman Ramón
Josse De Baerdemaeker
+ PDF Chat NonlinearSolve.jl: High-Performance and Robust Solvers for Systems of Nonlinear Equations in Julia 2024 Avik Pal
Flemming Holtorf
Axel Larsson
Torkel E. Loman
Utkarsh Azad
Frank Schaefer
Qingyu Qu
Alan Edelman
Christopher Rackauckas

Works That Cite This (71)

Action Title Year Authors
+ Automatic differentiation in ML: Where we are and where we should be going. 2018 Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
+ PDF Chat A Comparison of Automatic Differentiation and Continuous Sensitivity Analysis for Derivatives of Differential Equation Solutions 2021 Yingbo Ma
Vaibhav Dixit
Michael Innes
Xing‐Jian Guo
Christopher Rackauckas
+ A Differentiable Augmented Lagrangian Method for Bilevel Nonlinear Optimization 2019 Benoit Landry
Zachary Manchester
Marco Pavone
+ Fashionable Modelling with Flux 2018 Michael Innes
Elliot Saba
Keno Fischer
Dhairya Gandhi
Marco Concetto Rudilosso
Neethu Mariya Joy
Tejan Karmali
Avik Pal
Viral B. Shah
+ Cataloging the Visible Universe through Bayesian Inference at Petascale 2018 Jeffrey Regier
Kiran Pamnany
Keno Fischer
Andreas Noack
Maximilian Lam
Jarrett Revels
Steve Howard
Ryan Giordano
David J. Schlegel
Jon McAuliffe
+ Neural Differential Equations for Inverse Modeling in Model Combustors 2021 Xingyu Su
Weiqi Ji
Long Zhang
Wantong Wu
Zhuyin Ren
Sili Deng
+ AbstractDifferentiation.jl: Backend-Agnostic Differentiable Programming in Julia 2021 Frank Schäfer
Mohamed Tarek
Lyndon White
Christopher Rackauckas
+ DiffEqFlux.jl - A Julia Library for Neural Differential Equations 2019 Christopher Rackauckas
Mike Innes
Yingbo Ma
Jesse Bettencourt
Lyndon White
Vaibhav Dixit
+ PDF Chat Cataloging the Visible Universe Through Bayesian Inference at Petascale 2018 Jeffrey Regier
Jon McAuliffe
R. C. Thomas
Prabhat
Kiran Pamnany
Keno Fischer
Andreas Noack
Maximilian Lam
Jarrett Revels
Steve Howard
+ Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism 2020 Levi D. McClenny
Ulisses Braga-Neto

Works Cited by This (0)

Action Title Year Authors