Stability of Twisted States in the Continuum Kuramoto Model

Type: Article

Publication Date: 2017-01-01

Citations: 9

DOI: https://doi.org/10.1137/16m1059175

Abstract

We study a nonlocal diffusion equation approximating the dynamics of coupled phase oscillators on large graphs. Under appropriate assumptions, the model has a family of steady state solutions called twisted states. We prove a sufficient condition for stability of twisted states with respect to perturbations in the Sobolev and BV spaces. As an application, we study the stability of twisted states in the Kuramoto model on small-world graphs.

Locations

  • SIAM Journal on Applied Dynamical Systems - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Scaling Limit of Kuramoto Model on Random Geometric Graphs 2024 Francisco Cirelli
Pablo Groisman
Ruojun Huang
Hernán Vivas
+ PDF Chat Stability of Twisted States in the Kuramoto Model on Cayley and Random Graphs 2015 Georgi S. Medvedev
Xuezhi Tang
+ PDF Chat Persistence of steady-states for dynamical systems on large networks 2024 Jason J. Bramburger
Matt Holzer
Jackson Williams
+ PDF Chat The continuum limit of the Kuramoto model on sparse random graphs 2019 Georgi S. Medvedev
+ PDF Chat The Kuramoto model in complex networks 2015 Francisco A. Rodrigues
Thomas Peron
Peng Ji
Jürgen Kurths
+ The continuum limit of the Kuramoto model on sparse random graphs 2018 Georgi S. Medvedev
+ PDF Chat Weakly interacting diffusions on graphs 2020 Fabio Coppini
+ PDF Chat Graphop Mean-Field Limits for Kuramoto-Type Models 2022 Marios Antonios Gkogkas
Christian Kuehn
+ Dynamical Systems on Networks: A Tutorial 2014 Mason A. Porter
James P. Gleeson
+ The continuum limit of the Kuramoto model on sparse directed graphs 2018 Georgi S. Medvedev
+ PDF Chat Discretized kinetic theory on scale-free networks 2016 Maria Letizia Bertotti
Giovanni Modanese
+ PDF Chat Metastability in the stochastic nearest-neighbor Kuramoto model of coupled phase oscillators 2024 Nils Berglund
Georgi S. Medvedv
Gideon Simpson
+ PDF Chat The mathematics of asymptotic stability in the Kuramoto model 2018 Helge Dietert
Bastien Fernandez
+ PDF Chat The energy landscape of the Kuramoto model in one-dimensional random geometric graphs with a hole 2024 C. De Vita
Julián Fernández Bonder
Pablo Groisman
+ A unified framework for Simplicial Kuramoto models 2023 Marco Nurisso
Alexis Arnaudon
Maxime Lucas
Robert L. Peach
Paul Expert
Francesco Vaccarino
Giovanni Petri
+ A unified framework for simplicial Kuramoto models 2024 Marco Nurisso
Alexis Arnaudon
Maxime Lucas
Robert L. Peach
Paul Expert
Francesco Vaccarino
Giovanni Petri
+ The mean field equation for the Kuramoto model on graph sequences with non-Lipschitz limit 2017 Dmitry S. Kaliuzhnyi-Verbovetskyi
Georgi S. Medvedev
+ The mean field equation for the Kuramoto model on graph sequences with non-Lipschitz limit 2017 Dmitry S. Kaliuzhnyi-Verbovetskyi
Georgi S. Medvedev
+ PDF Chat Fixed points and stability in the two-network frustrated Kuramoto model 2015 Alexander C. Kalloniatis
Mathew Zuparic
+ PDF Chat Emergent behaviors of high-dimensional Kuramoto models on Stiefel manifolds 2021 Seung‐Yeal Ha
Myeongju Kang
Dohyun Kim