Vortex and disclination structures in a nematic-superconductor state

Type: Article

Publication Date: 2016-11-16

Citations: 8

DOI: https://doi.org/10.1103/physrevb.94.184507

Abstract

The nematic-superconductor state is an example of a quantum liquid crystal that breaks gauge as well as rotation invariance. It was conjectured to exist in the pseudogap regime of the cuprates high $T_c$ superconductors. The nematic-superconductor state is characterized by two complex order parameters: one of them is related with superconductivity and the other one describes a nematic order. It supports two main classes of topological defects: half-vortices and disclinations. In this paper we present a Ginzburg-Landau approach to study the structure of these topological defects. Due to a geometrical coupling between the superconductor and the nematic order parameters, we show that vortices are strongly coupled with disclinations. We have found a restoring force between vortices and disclinations that produces harmonic excitations whose natural frequency depends on the geometrical coupling constant and the superconductor condensation energy. Moreover, in a regime with high density of defects, we have found a structural phase transition between vortex-disclination lattices with different symmetries.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The attraction between antiferromagnetic quantum vortices as origin of superconductivity in cuprates 2018 P. A. Marchetti
+ PDF Chat Charge modulation in the background of depleted superconductivity inside vortices 2024 Chiranjit Mahato
Anurag Banerjee
C. PĂ©pin
Amit Ghosal
+ PDF Chat Geometry defects in bosonic symmetry-protected topological phases 2016 Yizhi You
Yi‐Zhuang You
+ PDF Chat Vortices in a Ginzburg-Landau theory of superconductors with nematic order 2022 R. S. Severino
P. D. Mininni
Eduardo Fradkin
V. Bekeris
G. Pasquini
G. Lozano
+ PDF Chat Electronic properties of emergent topological defects in chiral<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math>-wave superconductivity 2016 Lingfei Zhang
V. FernĂĄndez Becerra
Lucian Covaci
M. V. MiloĆĄevıć
+ Enigma of the vortex state in a strongly correlated d-wave superconductor 2022 Anushree Datta
Hitesh J. Changlani
Kun Yang
Amit Ghosal
+ The attraction between antiferromagnetic quantum vortices as origin of superconductivity in cuprates 2018 P. A. Marchetti
+ Vortex phases 2001 Thierry Giamarchi
S. Bhattacharya
+ Vortex phases 2001 T. Giamarchi
S. Bhattacharya
+ Coreless vortices as direct signature of chiral $d$-wave superconductivity 2022 Patric Holmvall
Annica M. Black‐Schaffer
+ PDF Chat Pseudo-spin skyrmions in the phase diagram of cuprate superconductors 2018 Corentin Morice
Dipanjan Chakraborty
X. Montiel
C. PĂ©pin
+ PDF Chat Vortices in superconductors with a columnar defect: Finite size effects 2005 Edson Sardella
Rodrigo de Alvarenga Freire
Paulo Noronha Lisboa‐Filho
+ PDF Chat Vortices and charge order in high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:math>superconductors 2014 M. Einenkel
Hendrik Meier
C. PĂ©pin
K. B. Efetov
+ Topological defects as relics of spontaneous symmetry breaking in a holographic superconductor 2019 Hua-Bi Zeng
Chuan-Yin Xia
Wojciech H. Zurek
Hai-Qing Zhang
+ PDF Chat Electronic structure of topological defects in the pair density wave superconductor 2024 Marcus Rosales
Eduardo Fradkin
+ Kinematic vortices induced by defects in gapless superconductors 2021 VinĂ­cius S. Souto
Elwis Carlos Sartorelli Duarte
Edson Sardella
Rafael Zadorosny
+ PDF Chat Insulating vortex cores in disordered superconductors 2023 Anushree Datta
Anurag Banerjee
Nandini Trivedi
Amit Ghosal
+ Disorder-induced trapping and anti-trapping of vortices in type-II superconductors 2022 A. A. Kopasov
I. M. Tsar'kov
A. S. Mel’nikov
+ PDF Chat Disorder-induced trapping and antitrapping of vortices in type-II superconductors 2023 A. A. Kopasov
I. M. Tsar'kov
A. S. Mel’nikov
+ PDF Chat Vortex core excitations in superconductors with frustrated antiferromagnetism 2006 Jian‐Xin Zhu
A. V. Balatsky

Works Cited by This (28)

Action Title Year Authors
+ PDF Chat Role of nematic fluctuations in the thermal melting of pair-density-wave phases in two-dimensional superconductors 2011 Daniel G. Barci
Eduardo Fradkin
+ PDF Chat Towards a Two-Dimensional Superconducting State of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>La</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Sr</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>CuO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math>in a Moderate External Magnetic Field 2010 A. A. Schafgans
A. D. LaForge
S. V. Dordevic
M. M. Qazilbash
Willie J. Padilla
Kenneth S. Burch
Z. Q. Li
Seiki Komiya
Yoichi Ando
D. N. Basov
+ PDF Chat <i>Colloquium</i>: Theory of intertwined orders in high temperature superconductors 2015 Eduardo Fradkin
Steven A. Kivelson
J. M. Tranquada
+ PDF Chat Elasticity-driven interaction between vortices in type-II superconductors 2003 A. Cano
A. P. Levanyuk
S. A. Minyukov
+ PDF Chat Theory of the striped superconductor 2009 Erez Berg
Eduardo Fradkin
Steven A. Kivelson
+ PDF Chat Dissociation of Vortex Stacks into Fractional-Flux Vortices 2005 A. De Col
V. B. Geshkenbeǐn
G. Blatter
+ PDF Chat Theory of the quantum Hall Smectic Phase. I. Low-energy properties of the quantum Hall smectic fixed point 2002 Daniel G. Barci
Eduardo Fradkin
Steven A. Kivelson
Vadim Oganesyan
+ PDF Chat Liquid-crystal phases of quantum Hall systems 1999 Eduardo Fradkin
Steven A. Kivelson
+ PDF Chat Entropy-driven formation of a half-quantum vortex lattice 2010 Suk Bum Chung
Steven A. Kivelson
+ PDF Chat Dynamical Layer Decoupling in a Stripe-Ordered High-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:math>Superconductor 2007 Erez Berg
Eduardo Fradkin
Eun-Ah Kim
Steven A. Kivelson
Vadim Oganesyan
J. M. Tranquada
Shichun Zhang