Tilings in graphons

Type: Article

Publication Date: 2020-12-11

Citations: 7

DOI: https://doi.org/10.1016/j.ejc.2020.103284

Locations

  • European Journal of Combinatorics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat KomlĂłs's tiling theorem via graphon covers 2018 Jan HladkĂ˝
Ping Hu
Diana Piguet
+ PDF Chat Matching Polytons 2019 Martin DoleĹľal
Jan HladkĂ˝
+ Matching polytons. 2016 Martin DoleĹľal
Jan HladkĂ˝
+ Tiling problems in edge-ordered graphs 2023 Igor Araujo
SimĂłn Piga
Andrew Treglown
Zimu Xiang
+ On vertex covers, matchings and random trees 2004 Stéphane Coulomb
Michel Bauer
+ PDF Chat Strict monotonicity of percolation thresholds under covering maps 2019 SĂ©bastien Martineau
Franco Severo
+ Strict monotonicity of percolation thresholds under covering maps 2018 SĂ©bastien Martineau
Franco Severo
+ Strict monotonicity of percolation thresholds under covering maps 2018 SĂ©bastien Martineau
Franco Severo
+ PDF Chat On Komlós’ tiling theorem in random graphs 2019 Rajko Nenadov
Nemanja Škorić
+ Tiling edge-ordered graphs with monotone paths and other structures 2023 Igor AraĂşjo
SimĂłn Piga
Andrew Treglown
Zimu Xiang
+ Fractional matchings and covers in infinite hypergraphs 1985 Ron Aharoni
+ PDF Chat A Median-Type Condition for Graph Tiling 2017 Diana Piguet
Maria Saumell
+ Tiling dense hypergraphs 2023 Richard Lang
+ Matchings and Tilings in Hypergraphs 2016 Chuanyun Zang
+ Finitely forcible graphons and permutons 2014 Roman Glebov
Andrzej Grzesik
Tereza Klimošová
Daniel Kráľ
+ Finitely forcible graphons and permutons 2013 Roman Glebov
Andrzej Grzesik
Tereza Klimošová
Daniel Kráľ
+ Finitely forcible graphons and permutons 2013 Roman Glebov
Andrzej Grzesik
Tereza Klimošová
Daniel Kráľ
+ PDF Chat Quotient graphs and stochastic matrices 2024 Frederico Cançado
Gabriel Coutinho
+ PDF Chat Tiling $H$ in dense graphs 2025 NING-SHEN CHEN
Xizhi Liu
Lin Sun
Guanghui Wang
+ Limit structures and property testing 2015 Tereza Klimošová