Type: Review
Publication Date: 2015-09-01
Citations: 69
DOI: https://doi.org/10.1142/s0129055x1550018x
We consider N × N random matrices of the form H = W + V where W is a real symmetric Wigner matrix and V a random or deterministic, real, diagonal matrix whose entries are independent of W. We assume subexponential decay for the matrix entries of W and we choose V so that the eigenvalues of W and V are typically of the same order. For a large class of diagonal matrices V, we show that the rescaled distribution of the extremal eigenvalues is given by the Tracy–Widom distribution F 1 in the limit of large N. Our proofs also apply to the complex Hermitian setting, i.e. when W is a complex Hermitian Wigner matrix.