Edge universality for deformed Wigner matrices

Type: Review

Publication Date: 2015-09-01

Citations: 69

DOI: https://doi.org/10.1142/s0129055x1550018x

Abstract

We consider N × N random matrices of the form H = W + V where W is a real symmetric Wigner matrix and V a random or deterministic, real, diagonal matrix whose entries are independent of W. We assume subexponential decay for the matrix entries of W and we choose V so that the eigenvalues of W and V are typically of the same order. For a large class of diagonal matrices V, we show that the rescaled distribution of the extremal eigenvalues is given by the Tracy–Widom distribution F 1 in the limit of large N. Our proofs also apply to the complex Hermitian setting, i.e. when W is a complex Hermitian Wigner matrix.

Locations

  • Reviews in Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Bulk universality for deformed Wigner matrices 2016 Ji Oon Lee
Kevin Schnelli
Ben Stetler
Horng‐Tzer Yau
+ Extremal Eigenvalues and Eigenvectors of Deformed Wigner Matrices 2013 Ji Oon Lee
Kevin Schnelli
+ Extremal Eigenvalues and Eigenvectors of Deformed Wigner Matrices 2013 Ji Oon Lee
Kevin Schnelli
+ PDF Chat Extremal eigenvalues and eigenvectors of deformed Wigner matrices 2015 Ji Oon Lee
Kevin Schnelli
+ Universality of the Edge Distribution of Eigenvalues of Wigner Random Matrices with Polynomially Decaying Distributions of Entries 2005 A. A. Ruzmaikina
+ PDF Chat Edge universality for non-Hermitian random matrices 2020 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ PDF Chat Local deformed semicircle law and complete delocalization for Wigner matrices with random potential 2013 Ji Oon Lee
Kevin Schnelli
+ PDF Chat Deformed Fr\'echet law for Wigner and sample covariance matrices with tail in crossover regime 2024 Yi Han
+ Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices 2019 Yiting Li
Kevin Schnelli
Yuanyuan Xu
+ Local deformed semicircle law and complete delocalization for Wigner matrices with random potential 2013 Ji Oon Lee
Kevin Schnelli
+ PDF Chat A necessary and sufficient condition for edge universality of Wigner matrices 2014 Ji Oon Lee
Jun Yin
+ PDF Chat Universality at the Edge of the Spectrum¶in Wigner Random Matrices 1999 Alexander Soshnikov
+ Edge Universality for non-Hermitian Random Matrices 2019 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ Edge Universality for non-Hermitian Random Matrices 2019 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ Local deformed semicircle law and complete delocalization for Wigner matrices with random potential 2013 Ji Oon Lee
Kevin Schnelli
+ Central limit theorem for linear spectral statistics of deformed Wigner matrices 2017 Hong Chang Ji
Ji Oon Lee
+ Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices 2017 Hong Chang Ji
Ji Oon Lee
+ Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices 2017 Hong Chang Ji
Ji Oon Lee
+ Wigner matrices 2015 Gérard Ben Arous
Alice Guionnet
+ Universality for certain Hermitian Wigner Matrices under weak moment conditions 2009 Kurt Johansson