On Shapiro’s cyclic inequality for 𝑁=13

Type: Article

Publication Date: 1985-01-01

Citations: 9

DOI: https://doi.org/10.1090/s0025-5718-1985-0790653-0

Abstract

A cyclic sum <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S left-parenthesis bold x right-parenthesis equals normal upper Sigma x Subscript i Baseline slash left-parenthesis x Subscript i plus 1 Baseline plus x Subscript i plus 2 Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">x</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi> <mml:mspace width="thickmathspace" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>+</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">S({\mathbf {x}}) = \Sigma \;{x_i}/({x_{i + 1}} + {x_{i + 2}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is formed with the <italic>N</italic> components of a vector <bold>x</bold>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x Subscript upper N plus 1 Baseline equals x 1"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{x_{N + 1}} = {x_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x Subscript upper N plus 2 Baseline equals x 2"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{x_{N + 2}} = {x_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and where all denominators are positive and all numerators are nonnegative. It is known that there exist vectors <bold>x</bold> for which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S left-parenthesis bold x right-parenthesis greater-than upper N slash 2"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">x</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mi>N</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">S({\mathbf {x}}) &gt; N/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N greater-than-or-slanted-equals 14"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>14</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">N \geqslant 14</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and even, and if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N greater-than-or-slanted-equals 25"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>25</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">N \geqslant 25</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It has been proved that the inequality <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S left-parenthesis bold x right-parenthesis greater-than-or-slanted-equals upper N slash 2"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">x</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mi>N</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">S({\mathbf {x}}) \geqslant N/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> holds for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N less-than-or-slanted-equals 12"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mn>12</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">N \leqslant 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Although it has been conjectured repeatedly that the inequality also holds for odd <italic>N</italic> between 13 and 23. this has apparently not yet been proved. Here we will confirm that the inequality indeed holds for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N equals 13"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mn>13</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">N = 13</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The validity of Shapiro’s cyclic inequality 1989 B. A. Troesch
+ A review of Shapiro’s cyclic inequality 1992 Achim Clausing
+ PDF Chat On Opial’s inequality for 𝑓⁽ⁿ⁾ 1992 A. M. Fink
+ A Cyclic Inequality 1984 Alexander Kovačec
+ PDF Chat The shooting method applied to a cyclic inequality 1980 B. A. Troesch
+ Shapiro's cyclic inequality for even <inline-formula><graphic file="1029-242X-2002-509463-i1.gif"/></inline-formula> 2002 Mcleod JB
Bushell PJ
+ On Shapiro's Cyclic Inequality for N = 13 1985 B. A. Troesch
+ PDF Chat Stolarsky’s inequality with general weights 1995 Lech Maligranda
‎Josip Pečarić
Per O. Å. Persson
+ PDF Chat A variant of Maclaurin’s inequality 2025 Terence Tao
+ PDF Chat On the inequality |𝑝(𝑧)|≤𝑝(|𝑧|) for polynomials 1995 Valerio De Angelis
+ PDF Chat On ℎ𝑜𝑚dim𝑀𝑈_{*}(𝑋×𝑌) 1976 Duane O’Neill
+ PDF Chat Plana’s summation formula for ∑^{∞}_{𝑚=1,3,⋯}𝑚⁻²sin(𝑚𝛼),𝑚⁻³cos(𝑚𝛼),𝑚⁻²𝐴^{𝑚},𝑚⁻³𝐴^{𝑚} 1990 Kevin M. Dempsey
Dajin Liu
J. P. Dempsey
+ PDF Chat Higher order Turán inequalities 1998 Dimitar K. Dimitrov
+ PDF Chat On primes 𝑝 with 𝜎(𝑝^{𝛼})=𝑚² 1987 J. Chidambaraswamy
P. V. Krishnaiah
+ PDF Chat On Euler’s criterion for cubic nonresidues 1975 Kenneth S. Williams
+ PDF Chat An inequality of Turán type for Jacobi polynomials 1972 George Gasper
+ PDF Chat On polynomials satisfying a Turán type inequality 1974 George Csordás
Jack Williamson
+ PDF Chat The Π¹₂-singleton conjecture 1990 Sy D. Friedman
+ PDF Chat On the Euclidean nature of four cyclic cubic fields 1993 H. J. Godwin
J. R. Smith
+ Shapiro's cyclic inequality for even 2002 PJ Bushell
J. B. McLeod