The best constant for the centered Hardy–Littlewood maximal inequality

Type: Article

Publication Date: 2003-03-01

Citations: 108

DOI: https://doi.org/10.4007/annals.2003.157.647

Abstract

We find the exact value of the best possible constant C for the weak-type (1, 1) inequality for the one-dimensional centered Hardy-Littlewood maximal operator.We prove that C is the largest root of the quadratic equation 12C 2 -22C + 5 = 0 thus obtaining C = 1.5675208 . . . .This is the first time the best constant for one of the fundamental inequalities satisfied by a centered maximal operator is precisely evaluated.

Locations

  • arXiv (Cornell University) - View - PDF
  • Annals of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ The best constant for centered Hardy-Littlewood maximal inequality 2003 Antonios D. Melas
+ The best constant for the centered maximal operator on radial functions 2009 J. M. Aldaz
J. Pérez Lázaro
+ The best constant for the centered maximal operator on radial decreasing functions 2009 J. M. Aldaz
J. Pérez Lázaro
+ PDF Chat The best constant for the centered maximal operator on radial decreasing functions 2011 J. M. Aldaz
J. Pérez Lázaro
+ PDF Chat On the centered Hardy-Littlewood maximal operator 2002 Antonios D. Melas
+ PDF Chat Lower Bounds and Fixed Points for the Centered Hardy–Littlewood Maximal Operator 2019 Samuel Zbarsky
+ PDF Chat A remark on the centered n-dimensional Hardy-Littlewood maximal function 2000 J. M. Aldaz
+ Chapter 1: The Hardy-Littlewood maximal operator 2018
+ Lower bounds and fixed points for the centered Hardy--Littlewood maximal operator 2019 Samuel Zbarsky
+ Lower bounds and fixed points for the centered Hardy--Littlewood maximal operator 2019 Samuel Zbarsky
+ The sharp constant for truncated Hardy-Littlewood maximal inequality 2021 Jia Wu
Shao Liu
Mingquan Wei
Dunyan Yan
+ PDF Chat Centered Hardy–Littlewood maximal operator on the real line: Lower bounds 2019 Paata Ivanisvili
Samuel Zbarsky
+ Lower bounds for the centered Hardy-Littlewood maximal operator on the real line 2020 J. Pérez Lázaro
+ Continuity for the one-dimensional centered Hardy-Littlewood maximal operator at the derivative level 2021 Cristian González-Riquelme
+ The one-sided dyadic Hardy—Littlewood maximal operator 2014 María Lorente
F. J. Martín-Reyes
+ The hardy-littlewood maximal operator 1983 Jean-Lin Journé
+ The Hardy-Littlewood maximal operator 1975 Miguel de Guzmán
+ PDF Chat A note on Hardy-Littlewood maximal operators 2016 Mingquan Wei
Xudong Nie
Di Wu
Dunyan Yan
+ Weights for the one-side Hardy-Littlewood maximal functions 1991 Francisco Reyes
+ Continuity for the one-dimensional centered Hardy-Littlewood maximal operator at the derivative level 2023 Cristian González-Riquelme