Projects
Reading
People
Chat
SU\G
(đ¸)
/K¡U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
De-biasing the Lasso: Optimal Sample Size for Gaussian Designs
Adel Javanmard
,
Andrea Montanari
Type:
Preprint
Publication Date:
2015-08-11
Citations:
29
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
De-biasing the Lasso: Optimal Sample Size for Gaussian Designs
2015
Adel Javanmard
Andrea Montanari
+
PDF
Chat
Debiasing the lasso: Optimal sample size for Gaussian designs
2018
Adel Javanmard
Andrea Montanari
+
Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory
2013
Adel Javanmard
Andrea Montanari
+
Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory
2013
Adel Javanmard
Andrea Montanari
+
The Lasso with general Gaussian designs with applications to hypothesis testing
2020
Michael Celentano
Andrea Montanari
Yuting Wei
+
PDF
Chat
The Lasso with general Gaussian designs with applications to hypothesis testing
2023
Michael Celentano
Andrea Montanari
Yuting Wei
+
PDF
Chat
De-biasing the lasso with degrees-of-freedom adjustment
2022
Pierre Bellec
CunâHui Zhang
+
PDF
Chat
Hypothesis Testing in High-Dimensional Regression Under the Gaussian Random Design Model: Asymptotic Theory
2014
Adel Javanmard
Andrea Montanari
+
On the asymptotic variance of the debiased Lasso
2019
Sara van de Geer
+
PDF
Chat
False discovery rate control via debiased lasso
2019
Adel Javanmard
Hamid Javadi
+
False Discovery Rate Control via Debiased Lasso
2018
Adel Javanmard
Hamid Javadi
+
False Discovery Rate Control via Debiased Lasso
2018
Adel Javanmard
Hamid Javadi
+
Nearly Optimal Sample Size in Hypothesis Testing for High-Dimensional Regression
2013
Adel Javanmard
Andrea Montanari
+
Nearly Optimal Sample Size in Hypothesis Testing for High-Dimensional Regression
2013
Adel Javanmard
Andrea Montanari
+
On the efficiency of the de-biased Lasso
2017
Sara van de Geer
+
CAD: Debiasing the Lasso with inaccurate covariate model
2021
Michael Celentano
Andrea Montanari
+
CAD: Debiasing the Lasso with inaccurate covariate model
2021
Michael Celentano
Andrea Montanari
+
PDF
Chat
SLOPE for Sparse Linear Regression: Asymptotics and Optimal Regularization
2022
Hong Hu
Yue M. Lu
+
Non-Asymptotic Bounds for the $\ell_{\infty}$ Estimator in Linear Regression with Uniform Noise
2021
Yufei Yi
Matey Neykov
+
Rate Optimal Estimation and Confidence Intervals for High-dimensional Regression with Missing Covariates
2017
Yining Wang
Jialei Wang
Sivaraman Balakrishnan
Aarti Singh
Works That Cite This (28)
Action
Title
Year
Authors
+
PDF
Chat
The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled Chi-square
2019
Pragya Sur
Yuxin Chen
Emmanuel J. Candès
+
PDF
Chat
Linear Hypothesis Testing in Dense High-Dimensional Linear Models
2017
Yinchu Zhu
Jelena BradiÄ
+
Efficient Inference of Average Treatment Effects in High Dimensions via Approximate Residual Balancing
2016
Susan Athey
Guido W. Imbens
Stefan Wager
+
Learning L2 Continuous Regression Functionals via Regularized Riesz Representers
2018
Victor Chernozhukov
Whitney K. Newey
Rahul Singh
+
Statistical inference for high dimensional regression via Constrained Lasso
2017
Yun Yang
+
PDF
Chat
High-dimensional regression adjustments in randomized experiments
2016
Stefan Wager
Wenfei Du
Jonathan Taylor
Robert Tibshirani
+
Adaptive estimation of High-Dimensional Signal-to-Noise Ratios
2016
Nicolas VerzĂŠlen
Ălisabeth Gassiat
+
PDF
Chat
Asymptotics of Selective Inference
2017
Xiaoying Tian
Jonathan Taylor
+
PDF
Chat
Testability of high-dimensional linear models with nonsparse structures
2022
Jelena BradiÄ
Jianqing Fan
Yinchu Zhu
+
Joint Estimation and Inference for Data Integration Problems based on Multiple Multi-layered Gaussian Graphical Models
2018
Subhabrata Majumdar
George Michailidis
Works Cited by This (52)
Action
Title
Year
Authors
+
The Estimation of Prediction Error
2004
Bradley Efron
+
PDF
Chat
High-dimensional inference in misspecified linear models
2015
Peter BĂźhlmann
Sara van de Geer
+
PDF
Chat
The Concentration of Measure Phenomenon
2005
Michel Ledoux
+
Residual variance and the signal-to-noise ratio in high-dimensional linear models
2012
Lee H. Dicker
+
Exact Post-selection Inference for Forward Stepwise and Least Angle Regression
2014
Jonathan Taylor
Richard Lockhart
Ryan J. Tibshirani
Robert Tibshirani
+
Honest confidence regions and optimality in high-dimensional precision matrix estimation
2015
Jana JankovĂĄ
Sara van de Geer
+
PDF
Chat
Nearly unbiased variable selection under minimax concave penalty
2010
CunâHui Zhang
+
PDF
Chat
On the âdegrees of freedomâ of the lasso
2007
Hui Zou
Trevor Hastie
Robert Tibshirani
+
PDF
Chat
Reconstruction From Anisotropic Random Measurements
2013
Mark Rudelson
Shuheng Zhou
+
Nearly Optimal Sample Size in Hypothesis Testing for High-Dimensional Regression
2013
Adel Javanmard
Andrea Montanari