A New Proof of Szemer�di's Theorem for Arithmetic Progressions of Length Four

Type: Article

Publication Date: 1998-07-01

Citations: 454

DOI: https://doi.org/10.1007/s000390050065

Locations

  • Geometric and Functional Analysis - View
  • Geometric and Functional Analysis - View

Similar Works

Action Title Year Authors
+ A Short Proof of van der Waerden's Theorem on Arithmetic Progressions 1974 Ronald Graham
B. L. Rothschild
+ PDF A refinement of a theorem of Schur on primes in arithmetic progressions 1966 J. Wójcik
+ PDF A refinement of a theorem of Schur on primes in arithmetic progressions II 1966 J. Wójcik
+ A new proof of Szemerédi's theorem 2001 W. T. Gowers
+ PDF A refinement of a theorem of Schur on primes in arithmetic progressions III 1969 J. Wójcik
+ A note on Mertens' formula for arithmetic progressions 2007 Alessandro Languasco
Alessandro Zaccagnini
+ Tom Sanders - Roth's theorem on arithmetic progressions 2013 Tom Sanders
Fanny Bastien
Vanille Beaumont
+ Merten's theorem for arithmetic progressions 1974 Kenneth S. Williams
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ A Note on Arithmetic Progressions of Length Three 1974 Robert E. Dressler
+ A Note on Arithmetic Progressions of Length Three 1974 Robert E. Dressler
+ PDF NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR 2017 Ben Green
Terence Tao
+ Chen’ s theorem in arithmetical progressions 1989 Minggao Lu
Cai Yingchun
+ A survey of Roth's Theorem on progressions of length three 2011 Yui Nishizawa
+ Zeckendorf’s Theorem Using Indices in an Arithmetic Progression 2021 Amelia Gilson
Hadley Killen
Tamás Lengyel
Steven J. Miller
Razek Nadia
Joshua M. Siktar
Liza Sulkin
+ ROTH'S THEOREM ON ARITHMETIC PROGRESSIONS 2003 Alex Iosevich
+ New bounds for Szemeredi's theorem, II: A new bound for $r_4(N)$ 2006 Ben Green
Terence Tao
+ PDF Chat New lower bounds for the least common multiples of arithmetic progressions 2013 Rongjun Wu
Qianrong Tan
Shaofang Hong
+ New Lower Bounds for the Least Common Multiples of Arithmetic Progressions 2013 Rongjun
Wu
Qianrong
Tan
Shaofang
Hong
+ Refinements to the prime number theorem for arithmetic progressions 2024 Jesse Thorner
Asif Zaman