First-principles analysis of the intermediate band in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CuGa</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Fe</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

Type: Article

Publication Date: 2016-04-12

Citations: 11

DOI: https://doi.org/10.1103/physrevb.93.165204

Abstract

We present a comprehensive study of the electronic, magnetic, and optical properties of CuGa$_{1-x}$Fe$_x$S$_2$, as a promising candidate for intermediate-band (IB) solar cells. We use hybrid exchange-correlation functional within the density functional theory framework, and show that Fe doping induces unoccupied states 1.6-1.9 eV above the valence band. The IBs significantly enhance the optical absorption in lower energy part of the spectrum. We find that at moderate $n$-type co-doping concentration, the added charge occupies part of the IB in the gap, but large concentrations lower the energy of the occupied IB toward the valence band. Moreover, we show that Fe impurities tend to cluster within the compound and they choose antiferromagnetic ordering. The findings can have a significant effect in understanding this material and help to synthesize more efficient IB solar cells.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Density Functional Theory of Material Design$:$ Fundamentals and Applications$-II$ 2023 Ashish Kumar
Prashant Singh
Manoj K. Harbola
+ PDF Chat Low-energy properties of electrons and holes in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CuFeS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2022 Bjørnulf Brekke
Roman Malyshev
Ingeborg-Helene Svenum
Sverre M. Selbach
Thomas Tybell
Christoph Brüne
Arne Brataas
+ Exploring the suitable theoretical approach for understanding the electronic and magnetic properties of $α$-Iron 2020 Antik Sihi
Sudhir K. Pandey
+ Exploring the suitable theoretical approach for understanding the electronic and magnetic properties of $\alpha$-Iron 2020 Antik Sihi
Sudhir K. Pandey
+ PDF Chat Method for calculating the electronic structure of correlated materials from a truly first-principles<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mtext>LDA</mml:mtext><mml:mo>+</mml:mo><mml:mi>U</mml:mi></mml:mrow></mml:math>scheme 2010 K. Karlsson
F. Aryasetiawan
O. Jepsen
+ PDF Chat Density Functional Calculations 2006 David Alejandro Hernández-Velázquez
Florian Senn
Francisco Tenor- Io
Gang Yang
Hossam A. Almossalami
Issake Seidu
Indranil Sinha
Jaime Gustavo Rodríguez- Zavala
Jia Fu
Jiena Yun
+ PDF Chat Density functional theory of material design: Fundamentals and applications—II 2024 Ashish Kumar
Prashant Singh
Manoj K. Harbola
+ High-throughput Design of Magnetic Materials 2020 Hongbin Zhang
Ingo Opahle
Harish Ranjan Singh
Dominik Ohmer
+ High-throughput Design of Magnetic Materials 2020 Hongbin Zhang
+ PDF Chat Uncovering Electronic Exchange Behavior: Exploring Insights from Simple Models 2024 Rezaei Mahnaz
Abouie Jahanfar
Fariba Nazari
+ Semiconductor Physics: A Density Functional Journey 2020 Sujoy Datta
Debnarayan Jana
+ Semiconductor Physics: A Density Functional Journey 2020 Sujoy Datta
Debnarayan Jana
+ PDF Chat Understanding the origin of bandgap problem in transition and post-transition metal oxides 2019 Hengxin Tan
Haitao Liu
Yuanchang Li
Wenhui Duan
Shengbai Zhang
+ PDF Chat Band structure calculations of CuAlO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>, CuGaO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>, CuInO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>, and CuCrO<mml:math xmlns:mml="http://… 2011 Roland Gillen
John Robertson
+ High-throughput design of magnetic materials 2020 Hongbin Zhang
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>NaFe</mml:mi></mml:mrow><mml:mrow><mml:mn>0.56</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Cu</mml:mi></mml:mrow><mml:mrow><mml:mn>0.44</mml:mn></mml:mrow></mml:msub><mml:mi>As</mml:mi></mml:mrow></mml:math>: A Pnictide Insulating Phase Induced by On-Site Coulomb Interaction 2016 C. E. Matt
N. Xu
Baiqing Lv
Junzhang Ma
F. Bisti
J. Park
Tian Shang
Chongde Cao
Yu Song
Andriy H. Nevidomskyy
+ PDF Chat Metal-insulator transitions and magnetism in correlated band insulators: FeSi and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mtext>Co</mml:mtext></mml:mrow><mml:mi>x</mml:mi></mml:msub><mml:mtext>Si</mml:mtext></mml:mrow></mml:math> 2010 В. В. Мазуренко
А. О. Шориков
A. V. Lukoyanov
K. Kharlov
Evgeny Gorelov
A. I. Lichtenstein
В. И. Анисимов
+ PDF Chat Structural and electronic properties of Fe(Al<sub><i>x</i></sub>Ga<sub>1–</sub><sub><i>x</i></sub>)<sub>3</sub> system 2016 Debashis Mondal
C. Kamal
Soma Banik
Ashok Bhakar
Ajay Kak
Gangadhar Das
Vangala R. Reddy
Aparna Chakrabarti
Tapas Ganguli
+ Ab-initio search for half-metallic Co-based full Heusler alloys: Linear-response-based DFT+U study 2019 Kenji Nawa
Yoshio Miura
+ The effect of double counting, spin density, and Hund interaction in the different DFT+U functionals 2018 Siheon Ryee
Myung Joon Han

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat Projector augmented-wave method 1994 Peter E. Blöchl