Smectic-Ato -Cphase transition in isotropic disordered environments

Type: Article

Publication Date: 2013-04-02

Citations: 5

DOI: https://doi.org/10.1103/physreve.87.042501

Abstract

We study theoretically the smectic-$A$ to -$C$ phase transition in isotropic disordered environments. Surprisingly, we find that, as in the clean smectic-$A$ to -$C$ phase transition, smectic layer fluctuations do not affect the nature of the transition, in spite of the fact that they are much stronger in the presence of the disorder. As a result, we find that the universality class of the transition is that of the ``random field $XY$ model'' ($RFXY$).

Locations

Similar Works

Action Title Year Authors
+ PDF Chat Smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>A</mml:mi></mml:math>–smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi></mml:math>phase transition in biaxial disordered environments 2012 Leiming Chen
John Toner
+ PDF Chat A Modified Landau-de Gennes Theory for Smectic Liquid Crystals: Phase Transitions and Structural Transitions 2024 Baoming Shi
Yucen Han
C.-F. Ma
Apala Majumdar
Lei Zhang
+ PDF Chat Smectic order, pinning, and phase transition in a smectic-liquid-crystal cell with a random substrate 2013 Quan Zhang
Leo Radzihovsky
+ PDF Chat Molecular model for de Vries type smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>A</mml:mi></mml:math>–smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi></mml:math>phase transition in liquid crystals 2007 M. V. Gorkunov
Frank Gießelmann
Jan P. F. Lagerwall
T. J. Sluckin
M. A. Osipov
+ PDF Chat Smectic liquid crystals in random environments 1999 Leo Radzihovsky
John Toner
+ Random Anisotropy Spin-Glass 1980 E. Pytte
+ PDF Chat Surface alignment disorder and thermal Casimir forces in smectic-A liquid crystalline films 2020 Fahimeh Karimi Pour Haddadan
Ali Naji
Rudolf Podgornik
+ PDF Chat Dirty, Skewed, and Backwards: The Smectic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>A</mml:mi><mml:mo>−</mml:mo><mml:mi>C</mml:mi></mml:math>Phase Transition in Aerogel 2005 Leiming Chen
John Toner
+ PDF Chat Super-Rough Glassy Phase of the Random Field XY Model in Two Dimensions 2012 Anthony Perret
Zoran Ristivojević
Pierre Le Doussal
Grégory Schehr
Kay Jörg Wiese
+ Why the smectic A -- hexatic phase transition does not follow its universality class? 2016 E. I. Kats
V. V. Lebedev
A. R. Muratov
+ PDF Chat Mean-field nematic–smectic-<i>A</i>transition in a random polymer network 1996 Peter D. Olmsted
Eugene M. Terentjev
+ PDF Chat First-order isotropic–smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math>transition in liquid-crystal–aerosil gels 2004 M. Ramazanoglu
Paul S. Clegg
R. J. Birgeneau
C. W. Garland
M. E. Neubert
J. M. Kim
+ PDF Chat Nematic–to–Smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">A</mml:mi></mml:math>Transition in Aerogel 1997 Leo Radzihovsky
John Toner
+ PDF Chat Theory of chiral modulations and fluctuations in smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>A</mml:mi></mml:math>liquid crystals under an electric field 2000 Jonathan V. Selinger
Jianling Xu
Robin L. B. Selinger
B. R. Ratna
R. Shashidhar
+ Fluctuating random solids in low dimensions 2004 Paul M. Goldbart
Swagatam Mukhopadhyay
Alfred Zippelius
+ Random packing in three dimensions 2023 Chaoming Song
+ PDF Chat Soft elasticity in biaxial smectic and smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi></mml:math>elastomers 2006 Olaf Stenull
T. C. Lubensky
+ The Random First-Order Transition Theory of Glasses: a critical assessment 2009 Giulio Biroli
J. P. Bouchaud
+ Spin Glasses 2016 Marco Baity‐Jesi
+ PDF Chat Topological Phases of Amorphous Matter 2022 Adolfo G. Grushin

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (19)

Action Title Year Authors
+ PDF Chat Smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>A</mml:mi></mml:math>–smectic-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi></mml:math>phase transition in biaxial disordered environments 2012 Leiming Chen
John Toner
+ PDF Chat Dirty, Skewed, and Backwards: The Smectic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>A</mml:mi><mml:mo>−</mml:mo><mml:mi>C</mml:mi></mml:math>Phase Transition in Aerogel 2005 Leiming Chen
John Toner
+ PDF Chat “Soft” Anharmonic Vortex Glass in Ferromagnetic Superconductors 2001 Leo Radzihovsky
A. M. Ettouhami
Karl Saunders
John Toner
+ PDF Chat Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon 2006 Régis Guégan
Denis Morineau
Claude Loverdo
W. BĂ©ziel
M. Guendouz
+ Possible vortex-glass transition in a model random superconductor 1990 David A. Huse
H. Sebastian Seung
+ PDF Chat A Discotic Disguised as a Smectic: A Hybrid Columnar Bragg Glass 2000 Karl Saunders
Leo Radzihovsky
John Toner
+ Application of the renormalization group to phase transitions in disordered systems 1976 G. Grinstein
A. Luther
+ PDF Chat Smectic liquid crystals in random environments 1999 Leo Radzihovsky
John Toner
+ PDF Chat Transversely Driven Charge-Density Waves and Striped Phases of High-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="italic">T</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>Superconductors: The Current-Effect Transistor 1998 Leo Radzihovsky
John Toner
+ Lowering of Dimensionality in Phase Transitions with Random Fields 1976 Amnon Aharony
Y. Imry
Shang-keng Ma