Kronecker’s solution of Pell’s equation for CM fields

Type: Article

Publication Date: 2013-01-01

Citations: 0

DOI: https://doi.org/10.5802/aif.2830

Abstract

We generalize Kronecker’s solution of Pell’s equation to CM fields K whose Galois group over ℚ is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When K is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of K. Assuming Schanuel’s conjecture, we show that when K has degree greater than 2 over ℚ these CM values are transcendental.

Locations

  • OAKTRUST (Texas A&M University) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF
  • Annales de l’institut Fourier - View - PDF

Similar Works

Action Title Year Authors
+ 11. Quadratic number fields and Pell’s equation 2017 Benjamin Fine
Anthony Gaglione
Anja Moldenhauer
Gerhard Rosenberger
Dennis Spellman
+ 11 Quadratic Number Fields and Pell’s Equation 2023
+ Pell’s Equation 2003 Edward Barbeau
+ PDF Chat The Pell equation in quadratic fields 1943 Ivan Niven
+ Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multiplication 2021 Jared Asuncion
+ PDF Chat Computing the Hilbert class field of real quadratic fields 1999 Henri Cohen
Xavier-François Roblot
+ PDF Chat The derivative formula of p-adic L-functions for imaginary quadratic fields at trivial zeros 2022 Masataka Chida
Ming-Lun Hsieh
+ Certain CM class fields with smaller generators 2013 Ömer Küçüksakallı
Osmanbey Uzunkol
+ PDF Chat To the Hilbert class field from the hypergeometric modular function 2016 Atsuhira Nagano
Hironori Shiga
+ PDF Chat On some algebraic properties of CM-types of CM-fields and their reflexes 2010 Ryoko Oishi-Tomiyasu
+ PDF Chat Hermitian $K$-theory, Dedekind $\zeta$-functions, and quadratic forms over rings of integers in number fields 2020 Jonas Irgens Kylling
Oliver Röndigs
Paul Arne Østvær
+ The Chowla-Selberg Formula for CM Fields and the Colmez Conjecture 2016 Barquero Sanchez
Adrián Alberto
+ PELL’S EQUATIONS IN GAUSSIAN INTEGERS 2019 Algracia Kharbuki
Madan Mohan Singh
+ PDF Chat On the field extension by complex multiplication 1965 Tomio Kubota
+ PDF Chat On the Field Extension by Complex Multiplication 1965 Tomio Kubota
+ Polynomials over a Kroneckerian field 2000 Andrzej Schinzel
+ Hilbert’s 12th Problem, Complex Multiplication and Shimura Reciprocity 2018 Peter Stevenhagen
+ Applications of Complex Multiplication of Elliptic Curves 2012 Massimo Chenal
+ Function Field Analogue of Shimura's Conjecture on Period Symbols 2022 W. Dale Brownawell
Chieh-Yu Chang
Matthew A. Papanikolas
Fu‐Tsun Wei
+ The Chowla-Selberg formula for quartic Abelian CM fields 2015 Robert Cass

Works That Cite This (0)

Action Title Year Authors