On the resolution of equations $Ax^n-By^n=C$, II

Type: Article

Publication Date: 2015-01-01

Citations: 0

DOI: https://doi.org/10.5486/pmd.2015.7229

Locations

  • Publicationes Mathematicae Debrecen - View

Similar Works

Action Title Year Authors
+ On the resolution of equations Ax^n-By^n=C in integers x,y and n\geq3, II 2010 András Bazsó
Attila Bérczes
Kálmán Győry
Ákos Pintér
+ On the resolution of equations $Ax^n-By^n=C$ in integers $x,y$ and $n\geq 3$. I. 2007 K. Győry
Á. Pintér
+ On the equation $ax^n - by^n = c$ 1982 Jan‐Hendrik Evertse
+ PDF Chat On the resolution of the Diophantine equation $$U_n + U_m = x^q$$ 2025 Pritam Kumar Bhoi
Sudhansu Sekhar Rout
G. Panda
+ PDF Chat A note on the equation $ax^n - by^n = c$ 1996 Maurice Mignotte
+ On the Diophantine equation $$x^2+C=y^n$$ 2022 S. G. Rayaguru
+ On the Diophantine equation $$x^2+3^a41^b=y^n $$ 2020 Murat Alan
Uğur Zengin
+ PDF Chat On the solution in natural numbers of the equation $x^m - y^n = 1$ 1956 Regina Hampel
+ On the Diophantine Equation $(na)^x+(nb)^y=(nc)^z$ 2018 Chen Feng-juan
+ On the Diophantine Equation \(\frac{ax^{n+2l}+c}{abt^2x^n+d}=by^2\). 2020 Wenyu Luo
Pingzhi Yuan
+ On the equation \(a^x + b^y = c^z\) 1984 A. Grytczuk
A. Grelak
+ On the Diophantine equation $ax^2-by^2=c$ 1994 A. Grelak
A. Grytczuk
+ PDF Chat On the Diophantine Equation $Cx^2 + D = 2y^n$. 1966 W. Ljunggren
+ PDF Chat The Diophantine equation $a^x + b^y = c^z$, II 1995 Nobuhiro Terai
+ On Diophantine Equations $x^2 - dy^2 = AB$ 1995 Yungchen Cheng
+ PDF Chat XX. <i>On the resolution of equations of the fifth degree</i> 1845 James Cockle
+ PDF Chat The equation $ax^m + by^m = cx^n + dy^n$ 1982 T. N. Shorey
+ On the equation axm − byn = k 1986 T. N. Shorey
+ PDF Chat On the diophantine equation $α(x^n - 1)/(x - 1) = y^m$ 1972 K. Inkeri
+ PDF Chat On the equation $a(x^m-1)/(x-1)=b(y^n-1)/(y-1)$. 1980 R. Balasubramanian
T. N. Shorey

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors