Potential Theory in Lipschitz Domains

Type: Article

Publication Date: 2001-10-01

Citations: 12

DOI: https://doi.org/10.4153/cjm-2001-041-6

Abstract

Abstract We prove comparison theorems for the probability of life in a Lipschitz domain between Brownian motion and random walks.

Locations

  • Canadian Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Potential theory on Lipschitz domains in Riemannian manifolds: $L^p$ Hardy, and Holder space results 2001 Marius Mitrea
Michael E. Taylor
+ Potential Theory in Classical Probability 2008 Nicolas Privault
+ Brownian Motion and Potential Theory 2010 Michael E. Taylor
+ Discrete harmonic functions in Lipschitz domains 2019 Sami Mustapha
Mohamed Sifi
+ Discrete harmonic functions in Lipschitz domains 2019 Sami Mustapha
Mohamed Sifi
+ PDF Chat Potential Theory on Lipschitz Domains in Riemannian Manifolds: Sobolev–Besov Space Results and the Poisson Problem 2000 Marius Mitrea
Michael Taylor
+ Discrete harmonic functions in Lipschitz domains 2019 Sami Mustapha
Mohamed Sifi
+ Brownian Motion and Potential Theory 1996 Michael E. Taylor
+ PDF Chat Martin boundary of random walks in convex cones 2020 Jetlir Duraj
Kilian Raschel
Pierre Tarrago
Vitali Wachtel
+ PDF Chat Martin boundary of random walks in convex cones 2018 Kilian Raschel
Pierre Tarrago
+ Martin boundaries and random walks 1997 Stanley Sawyer
+ POTENTIAL THEORY FOR MARKOV CHAINS 1973 R. Syski
+ Brownian Motion and Obstacles 1994 Alain‐Sol Sznitman
+ Potential analysis on nonsmooth domains—Martin boundary and boundary Harnack principle 2012 Hiroaki Aikawa
+ Brownian motion in Euclidean space 2005 Daniel W. Stroock
+ Function Spaces and Potential Theory 1996 David R. Adams
Lars Inge Hedberg
+ PDF Chat Cauchy's formulas for random walks in bounded domains 2014 Alain Mazzolo
Clélia de Mulatier
Andrea Zoia
+ On the Potential Theory of One-dimensional Subordinate Brownian Motions with Continuous Components 2009 Panki Kim
Renming Song
Zoran Vondraček
+ On potential theory of hyperbolic Brownian motion with drift 2015 Grzegorz Serafin
+ PDF Chat Quadratic Variation of Potentials and Harmonic Functions 1970 Gunnar A. Brosamler